Abstract: Despite the unreasonable feature independence assumption, the naive Bayes classifier provides a simple way but competes well with more sophisticated classifiers under zero-one loss function for assigning an observation to a class given the features observed. However, it has been proved that the naive Bayes works poorly in estimation and in classification for some cases when the features are correlated. To extend, researchers had developed many approaches to free of this primary but rarely satisfied assumption in the real world for the naive Bayes. In this paper, we propose a new classifier which is also free of the independence assumption by evaluating the dependence of features through pair copulas constructed via a graphical model called D-Vine tree. This tree structure helps to decompose the multivariate dependence into many bivariate dependencies and thus makes it possible to easily and efficiently evaluate the dependence of features even for data with high dimension and large sample size. We further extend the proposed method for features with discrete-valued entries. Experimental studies show that the proposed method performs well for both continuous and discrete cases.
The present paper addresses computational and numerical challenges when working with t copulas and their more complicated extensions, the grouped t and skew t copulas. We demonstrate how the R package nvmix can be used to work with these copulas. In particular, we discuss (quasi-)random sampling and fitting. We highlight the difficulties arising from using more complicated models, such as the lack of availability of a joint density function or the lack of an analytical form of the marginal quantile functions, and give possible solutions along with future research ideas.