We introduce a new class of distributions called the generalized odd generalized exponential family. Some of its mathematical properties including explicit expressions for the ordinary and incomplete moments, quantile and generating functions, R𝑒́nyi, Shannon and q-entropies, order statistics and probability weighted moments are derived. We also propose bivariate generalizations. We constructed a simple type Copula and intro-duced a useful stochastic property. The maximum likelihood method is used for estimating the model parameters. The importance and flexibility of the new family are illustrated by means of two applications to real data sets. We assess the performance of the maximum likelihood estimators in terms of biases and mean squared errors via a simulation study.