A new log location-scale regression model with applications to voltage and Stanford heart transplant data sets is presented and studied. The martingale and modified deviance residuals to detect outliers and evaluate the model assumptions are defined. The new model can be very useful in analysing and modeling real data and provides more better fits than other regression models such as the log odd log-logistic generalized half-normal, the log beta generalized half-normal, the log generalized half-normal, the log-Topp-Leone odd log- logistic-Weibull and the log-Weibull models. Characterizations based on truncated moments as well as in terms of the reverse hazard function are presented. The maximum likelihood method is discussed to estimate the model parameters by means of a graphical Monte Carlo simulation study. The flexibility of the new model illustrated by means of four real data sets.
Abstract: In this paper the log-exponentiated-Weibull regression model is modified to allow the possibility that long term survivors are present in the data. The modification leads to a log-exponentiated-Weibull regression model with cure rate, encompassing as special cases the log-exponencial regression and log-Weibull regression models with cure rate typically used to model such data. The models attempt to estimate simultaneously the effects of covariates on the acceleration/deceleration of the timing of a given event and the surviving fraction; that is, the proportion of the population for which the event never occurs. Assuming censored data, we consider a classic analysis and Bayesian analysis for the parameters of the proposed model. The normal curvatures of local influence are derived under various perturbation schemes and two deviance-type residuals are proposed to assess departures from the log-exponentiated-Weibull error assumption as well as to detect outlying observations. Finally, a data set from the medical area is analyzed.