Vaccine efficacy is a key index to evaluate vaccines in initial clinical trials during the development of vaccines. In particular, it plays a crucial role in authorizing Covid-19 vaccines. It has been reported that Covid-19 vaccine efficacy varies with a number of factors, including demographics of population, time after vaccine administration, and virus strains. By examining clinical trial data of three Covid-19 vaccine studies, we find that current approach to evaluating vaccines with an overall efficacy does not provide desired accuracy. It requires no time frame during which a candidate vaccine is evaluated, and is subject to misuse, resulting in potential misleading information and interpretation. In particular, we illustrate with clinical trial data that the variability of vaccine efficacy is underestimated. We demonstrate that a new method may help to address these caveats. It leads to accurate estimation of the variation of efficacy, provides useful information to define a reasonable time frame to evaluate vaccines, and avoids misuse of vaccine efficacy and misleading information.
It is well known that under certain regularity conditions the boot- strap sampling distributions of common statistics are consistent with their true sampling distributions. However, the consistency results rely heavily on the underlying regularity conditions and in fact, a failure to satisfy some of these may lead us to a serious departure from consistency. Consequently, the ‘sufficient bootstrap’ method (which only uses distinct units in a bootstrap sample in order to reduce the computational burden for larger sample sizes) based sampling distributions will also be inconsistent. In this paper, we combine the ideas of sufficient and m-out-of-n (m/n) bootstrap methods to regain consistency. We further propose the iterated version of this bootstrap method in non-regular cases and our simulation study reveals that similar or even better coverage accuracies than percentile bootstrap confidence inter- vals can be obtained through the proposed iterated sufficient m/n bootstrap with less computational time each case.
The probability that the estimator is equal to the value of the estimated parameter is zero. Hence in practical applications we provide together with the point estimates their estimated standard errors. Given a distribution of random variable which has heavier tails or thinner tails than a normal distribution, then the confidence interval common in the literature will not be applicable. In this study, we obtained some results on the confidence procedure for the parameters of generalized normal distribution which is robust in any case of heavier or thinner than the normal distribution using pivotal quantities approach, and on the basis of a random sample of fixed size n. Some simulation studies and applications are also examined.