Pub. online:4 Aug 2022Type:Research ArticleOpen Access
Journal:Journal of Data Science
Volume 18, Issue 3 (2020): Special issue: Data Science in Action in Response to the Outbreak of COVID-19, pp. 409–432
Abstract
We develop a health informatics toolbox that enables timely analysis and evaluation of the timecourse dynamics of a range of infectious disease epidemics. As a case study, we examine the novel coronavirus (COVID-19) epidemic using the publicly available data from the China CDC. This toolbox is built upon a hierarchical epidemiological model in which two observed time series of daily proportions of infected and removed cases are generated from the underlying infection dynamics governed by a Markov Susceptible-Infectious-Removed (SIR) infectious disease process. We extend the SIR model to incorporate various types of time-varying quarantine protocols, including government-level ‘macro’ isolation policies and community-level ‘micro’ social distancing (e.g. self-isolation and self-quarantine) measures. We develop a calibration procedure for underreported infected cases. This toolbox provides forecasts, in both online and offline forms, as well as simulating the overall dynamics of the epidemic. An R software package is made available for the public, and examples on the use of this software are illustrated. Some possible extensions of our novel epidemiological models are discussed.
The COVID-19 pandemic has created a sudden need for a wider uptake of home-based telework as means of sustaining the production. Generally, teleworking arrangements impact directly worker’s efficiency and motivation. The direction of this impact, however, depends on the balance between positive effects of teleworking (e.g. increased flexibility and autonomy) and its downsides (e.g. blurring boundaries between private and work life). Moreover, these effects of teleworking can be amplified in case of vulnerable groups of workers, such as women. The first step in understanding the implications of teleworking on women is to have timely information on the extent of teleworking by age and gender. In the absence of timely official statistics, in this paper we propose a method for nowcasting the teleworking trends by age and gender for 20 Italian regions using mobile network operators (MNO) data. The method is developed and validated using MNO data together with the Italian quarterly Labour Force Survey. Our results confirm that the MNO data have the potential to be used as a tool for monitoring gender and age differences in teleworking patterns. This tool becomes even more important today as it could support the adequate gender mainstreaming in the ‘Next Generation EU’ recovery plan and help to manage related social impacts of COVID-19 through policymaking.
Researchers and public officials tend to agree that until a vaccine is readily available, stopping SARS-CoV-2 transmission is the name of the game. Testing is the key to preventing the spread, especially by asymptomatic individuals. With testing capacity restricted, group testing is an appealing alternative for comprehensive screening and has recently received FDA emergency authorization. This technique tests pools of individual samples, thereby often requiring fewer testing resources while potentially providing multiple folds of speedup. We approach group testing from a data science perspective and offer two contributions. First, we provide an extensive empirical comparison of modern group testing techniques based on simulated data. Second, we propose a simple one-round method based on ${\ell _{1}}$-norm sparse recovery, which outperforms current state-of-the-art approaches at certain disease prevalence rates.