Pub. online:8 Aug 2024Type:Statistical Data ScienceOpen Access
Journal:Journal of Data Science
Volume 22, Issue 3 (2024): Special issue: The Government Advances in Statistical Programming (GASP) 2023 conference, pp. 436–455
Abstract
The presence of outliers in a dataset can substantially bias the results of statistical analyses. In general, micro edits are often performed manually on all records to correct for outliers. A set of constraints and decision rules is used to simplify the editing process. However, agricultural data collected through repeated surveys are characterized by complex relationships that make revision and vetting challenging. Therefore, maintaining high data-quality standards is not sustainable in short timeframes. The United States Department of Agriculture’s (USDA’s) National Agricultural Statistics Service (NASS) has partially automated its editing process to improve the accuracy of final estimates. NASS has investigated several methods to modernize its anomaly detection system because simple decision rules may not detect anomalies that break linear relationships. In this article, a computationally efficient method that identifies format-inconsistent, historical, tail, and relational anomalies at the data-entry level is introduced. Four separate scores (i.e., one for each anomaly type) are computed for all nonmissing values in a dataset. A distribution-free method motivated by the Bienaymé-Chebyshev’s inequality is used for scoring the data entries. Fuzzy logic is then considered for combining four individual scores into one final score to determine the outliers. The performance of the proposed approach is illustrated with an application to NASS survey data.
Classification is an important statistical tool that has increased its importance since the emergence of the data science revolution. However, a training data set that does not capture all underlying population subgroups (or clusters) will result in biased estimates or misclassification. In this paper, we introduce a statistical and computational solution to a possible bias in classification when implemented on estimated population clusters. An unseen-cluster problem denotes the case in which the training data does not contain all underlying clusters in the population. Such a scenario may occur due to various reasons, such as sampling errors, selection bias, or emerging and disappearing population clusters. Once an unseen-cluster problem occurs, a testing observation will be misclassified because a classification rule based on the sample cannot capture a cluster not observed in the training data (sample). To overcome such issues, we suggest a two-stage classification method to ameliorate the unseen-cluster problem in classification. We suggest a test to identify the unseen-cluster problem and demonstrate the performance of the two-stage tailored classifier using simulations and a public data example.