A new log location-scale regression model with applications to voltage and Stanford heart transplant data sets is presented and studied. The martingale and modified deviance residuals to detect outliers and evaluate the model assumptions are defined. The new model can be very useful in analysing and modeling real data and provides more better fits than other regression models such as the log odd log-logistic generalized half-normal, the log beta generalized half-normal, the log generalized half-normal, the log-Topp-Leone odd log- logistic-Weibull and the log-Weibull models. Characterizations based on truncated moments as well as in terms of the reverse hazard function are presented. The maximum likelihood method is discussed to estimate the model parameters by means of a graphical Monte Carlo simulation study. The flexibility of the new model illustrated by means of four real data sets.
In this work, we introduce a new distribution for modeling the extreme values. Some important mathematical properties of the new model are derived. We assess the performance of the maximum likelihood method in terms of biases and mean squared errors by means of a simulation study. The new model is better than some other important competitive models in modeling the repair times data and the breaking stress data.
In this paper, a new four parameter zero truncated Poisson Frechet distribution is defined and studied. Various structural mathematical properties of the proposed model including ordinary moments, incomplete moments, generating functions, order statistics, residual and reversed residual life functions are investigated. The maximum likelihood method is used to estimate the model parameters. We assess the performance of the maximum likelihood method by means of a numerical simulation study. The new distribution is applied for modeling two real data sets to illustrate empirically its flexibility.