Pub. online:13 Mar 2023Type:Computing In Data ScienceOpen Access
Journal:Journal of Data Science
Volume 21, Issue 2 (2023): Special Issue: Symposium Data Science and Statistics 2022, pp. 255–280
Abstract
Causal inference can estimate causal effects, but unless data are collected experimentally, statistical analyses must rely on pre-specified causal models. Causal discovery algorithms are empirical methods for constructing such causal models from data. Several asymptotically correct discovery methods already exist, but they generally struggle on smaller samples. Moreover, most methods focus on very sparse causal models, which may not always be a realistic representation of real-life data generating mechanisms. Finally, while causal relationships suggested by the methods often hold true, their claims about causal non-relatedness have high error rates. This non-conservative error trade off is not ideal for observational sciences, where the resulting model is directly used to inform causal inference: A causal model with many missing causal relations entails too strong assumptions and may lead to biased effect estimates. We propose a new causal discovery method that addresses these three shortcomings: Supervised learning discovery (SLdisco). SLdisco uses supervised machine learning to obtain a mapping from observational data to equivalence classes of causal models. We evaluate SLdisco in a large simulation study based on Gaussian data and we consider several choices of model size and sample size. We find that SLdisco is more conservative, only moderately less informative and less sensitive towards sample size than existing procedures. We furthermore provide a real epidemiological data application. We use random subsampling to investigate real data performance on small samples and again find that SLdisco is less sensitive towards sample size and hence seems to better utilize the information available in small datasets.
With multiple components and relations, financial data are often presented as graph data, since it could represent both the individual features and the complicated relations. Due to the complexity and volatility of the financial market, the graph constructed on the financial data is often heterogeneous or time-varying, which imposes challenges on modeling technology. Among the graph modeling technologies, graph neural network (GNN) models are able to handle the complex graph structure and achieve great performance and thus could be used to solve financial tasks. In this work, we provide a comprehensive review of GNN models in recent financial context. We first categorize the commonly-used financial graphs and summarize the feature processing step for each node. Then we summarize the GNN methodology for each graph type, application in each area, and propose some potential research areas.
Machine learning methods are increasingly applied for medical data analysis to reduce human efforts and improve our understanding of disease propagation. When the data is complicated and unstructured, shallow learning methods may not be suitable or feasible. Deep learning neural networks like multilayer perceptron (MLP) and convolutional neural network (CNN), have been incorporated in medical diagnosis and prognosis for better health care practice. For a binary outcome, these learning methods directly output predicted probabilities for patient’s health condition. Investigators still need to consider appropriate decision threshold to split the predicted probabilities into positive and negative regions. We review methods to select the cut-off values, including the relatively automatic methods based on optimization of the ROC curve criteria and also the utility-based methods with a net benefit curve. In particular, decision curve analysis (DCA) is now acknowledged in medical studies as a good complement to the ROC analysis for the purpose of decision making. In this paper, we provide the R code to illustrate how to perform the statistical learning methods, select decision threshold to yield the binary prediction and evaluate the accuracy of the resulting classification. This article will help medical decision makers to understand different classification methods and use them in real world scenario.
There has been increasing interest in modeling survival data using deep learning methods in medical research. In this paper, we proposed a Bayesian hierarchical deep neural networks model for modeling and prediction of survival data. Compared with previously studied methods, the new proposal can provide not only point estimate of survival probability but also quantification of the corresponding uncertainty, which can be of crucial importance in predictive modeling and subsequent decision making. The favorable statistical properties of point and uncertainty estimates were demonstrated by simulation studies and real data analysis. The Python code implementing the proposed approach was provided.