Abstract: Kang (2006) used the log-likelihood function with Lagrangian multipliers for estimation of cell probabilities in two-way incomplete contingency tables. The constraints on cell probabilities can be incorporated through Lagrangian multipliers for the likelihood function. The method can be readily extended to multidimensional tables. Variances of the MLEs are derived from the matrix of second derivatives of the log likelihood with respect to cell probabilities and the Lagrange multiplier. Wald and likelihood ratio tests of independence are derived using the estimates and estimated variances. Simulation results, when data are missing at random, reveal that maximum likelihood estimation (MLE) produces more efficient estimates of population proportions than either multiple imputation (MI) based on data augmentation or complete case (CC) analysis. Neither MLE nor MI, however, leads to an improvement over CC analysis with respect to power of tests for independence in 2×2 tables. Thus, the partially classified marginal information increases precision about proportions, but is not helpful for judging independence.
Abstract: We consider the Autoregressive Conditional Marked Duration (ACMD) model and apply it to 16 stocks traded in Hong Kong Stock Ex change (SEHK). By examining the orderings of appropriate sets of model parameters, market microstructure phenomena can be explained. To sub stantiate these conclusions, likelihood ratio test is used for testing the sig nificance of the parameter orderings of the ACMD model. While some of our results resolve a few controversial market microstructure hypotheses and echo some of the existing empirical evidence, we discover some interesting market microstructure phenomena that may be characteristic to SEHK.
Pub. online:14 Oct 2021Type:Statistical Data ScienceOpen Access
Journal:Journal of Data Science
Volume 20, Issue 3 (2022): Special Issue: Data Science Meets Social Sciences, pp. 279–302
Abstract
Cognitive Diagnosis Models (CDMs) are a special family of discrete latent variable models widely used in educational, psychological and social sciences. In many applications of CDMs, certain hierarchical structures among the latent attributes are assumed by researchers to characterize their dependence structure. Specifically, a directed acyclic graph is used to specify hierarchical constraints on the allowable configurations of the discrete latent attributes. In this paper, we consider the important yet unaddressed problem of testing the existence of latent hierarchical structures in CDMs. We first introduce the concept of testability of hierarchical structures in CDMs and present sufficient conditions. Then we study the asymptotic behaviors of the likelihood ratio test (LRT) statistic, which is widely used for testing nested models. Due to the irregularity of the problem, the asymptotic distribution of LRT becomes nonstandard and tends to provide unsatisfactory finite sample performance under practical conditions. We provide statistical insights on such failures, and propose to use parametric bootstrap to perform the testing. We also demonstrate the effectiveness and superiority of parametric bootstrap for testing the latent hierarchies over non-parametric bootstrap and the naïve Chi-squared test through comprehensive simulations and an educational assessment dataset.