Pub. online:11 Jun 2025Type:Statistical Data ScienceOpen Access
Journal:Journal of Data Science
Volume 23, Issue 3 (2025): Special Issue: 2024 WNAR/IMS/Graybill Annual Meeting, pp. 542–559
Abstract
After the onset of the COVID-19 pandemic, scientific interest in coronaviruses endemic in animal populations has increased dramatically. However, investigating the prevalence of disease in animal populations across the landscape, which requires finding and capturing animals can be difficult. Spatial random sampling over a grid could be extremely inefficient because animals can be hard to locate, and the total number of samples may be small. Alternatively, preferential sampling, using existing knowledge to inform sample location, can guarantee larger numbers of samples, but estimates derived from this sampling scheme may exhibit bias if there is a relationship between higher probability sampling locations and the disease prevalence. Sample specimens are commonly grouped and tested in pools which can also be an added challenge when combined with preferential sampling. Here we present a Bayesian method for estimating disease prevalence with preferential sampling in pooled presence-absence data motivated by estimating factors related to coronavirus infection among Mexican free-tailed bats (Tadarida brasiliensis) in California. We demonstrate the efficacy of our approach in a simulation study, where a naive model, not accounting for preferential sampling, returns biased estimates of parameter values; however, our model returns unbiased results regardless of the degree of preferential sampling. Our model framework is then applied to data from California to estimate factors related to coronavirus prevalence. After accounting for preferential sampling impacts, our model suggests small prevalence differences between male and female bats.
Researchers and public officials tend to agree that until a vaccine is readily available, stopping SARS-CoV-2 transmission is the name of the game. Testing is the key to preventing the spread, especially by asymptomatic individuals. With testing capacity restricted, group testing is an appealing alternative for comprehensive screening and has recently received FDA emergency authorization. This technique tests pools of individual samples, thereby often requiring fewer testing resources while potentially providing multiple folds of speedup. We approach group testing from a data science perspective and offer two contributions. First, we provide an extensive empirical comparison of modern group testing techniques based on simulated data. Second, we propose a simple one-round method based on ${\ell _{1}}$-norm sparse recovery, which outperforms current state-of-the-art approaches at certain disease prevalence rates.