Modeling heterogeneity on heavy-tailed distributions under a regression framework is challenging, yet classical statistical methodologies usually place conditions on the distribution models to facilitate the learning procedure. However, these conditions will likely overlook the complex dependence structure between the heaviness of tails and the covariates. Moreover, data sparsity on tail regions makes the inference method less stable, leading to biased estimates for extreme-related quantities. This paper proposes a gradient boosting algorithm to estimate a functional extreme value index with heterogeneous extremes. Our proposed algorithm is a data-driven procedure capturing complex and dynamic structures in tail distributions. We also conduct extensive simulation studies to show the prediction accuracy of the proposed algorithm. In addition, we apply our method to a real-world data set to illustrate the state-dependent and time-varying properties of heavy-tail phenomena in the financial industry.
As the COVID-19 pandemic has strongly disrupted people’s daily work and life, a great amount of scientific research has been conducted to understand the key characteristics of this new epidemic. In this manuscript, we focus on four crucial epidemic metrics with regard to the COVID-19, namely the basic reproduction number, the incubation period, the serial interval and the epidemic doubling time. We collect relevant studies based on the COVID-19 data in China and conduct a meta-analysis to obtain pooled estimates on the four metrics. From the summary results, we conclude that the COVID-19 has stronger transmissibility than SARS, implying that stringent public health strategies are necessary.
In this paper, we study macroscopic growth dynamics of social network link formation. Rather than focusing on one particular dataset, we find invariant behavior in regional social networks that are geographically concentrated. Empirical findings suggest that the startup phase of a regional network can be modeled by a self-exciting point process. After the startup phase ends, the growth of the links can be modeled by a non-homogeneous Poisson process with a constant rate across the day but varying rates from day to day, plus a nightly inactive period when local users are expected to be asleep. Conclusions are drawn based on analyzing four different datasets, three of which are regional and a non-regional one is included for contrast.