Pub. online:22 May 2024Type:Statistical Data ScienceOpen Access
Journal:Journal of Data Science
Volume 22, Issue 2 (2024): Special Issue: 2023 Symposium on Data Science and Statistics (SDSS): “Inquire, Investigate, Implement, Innovate”, pp. 259–279
Abstract
Predictive modeling often ignores interaction effects among predictors in high-dimensional data because of analytical and computational challenges. Research in interaction selection has been galvanized along with methodological and computational advances. In this study, we aim to investigate the performance of two types of predictive algorithms that can perform interaction selection. Specifically, we compare the predictive performance and interaction selection accuracy of both penalty-based and tree-based predictive algorithms. Penalty-based algorithms included in our comparative study are the regularization path algorithm under the marginality principle (RAMP), the least absolute shrinkage selector operator (LASSO), the smoothed clipped absolute deviance (SCAD), and the minimax concave penalty (MCP). The tree-based algorithms considered are random forest (RF) and iterative random forest (iRF). We evaluate the effectiveness of these algorithms under various regression and classification models with varying structures and dimensions. We assess predictive performance using the mean squared error for regression and accuracy, sensitivity, specificity, balanced accuracy, and F1 score for classification. We use interaction coverage to judge the algorithm’s efficacy for interaction selection. Our findings reveal that the effectiveness of the selected algorithms varies depending on the number of predictors (data dimension) and the structure of the data-generating model, i.e., linear or nonlinear, hierarchical or non-hierarchical. There were at least one or more scenarios that favored each of the algorithms included in this study. However, from the general pattern, we are able to recommend one or more specific algorithm(s) for some specific scenarios. Our analysis helps clarify each algorithm’s strengths and limitations, offering guidance to researchers and data analysts in choosing an appropriate algorithm for their predictive modeling task based on their data structure.