The Birnbaum-Saunders generalized t (BSGT) distribution is a very flflexible family of distributions that admits different degrees of skewness and kurtosis and includes some important special or limiting cases available in the literature, such as the Birnbaum-Saunders and BirnbaumSaunders t distributions. In this paper we provide a regression type model to the BSGT distribution based on the generalized additive models for location, scale and shape (GAMLSS) framework. The resulting model has high flflexibility and therefore a great potential to model the distribution parameters of response variables that present light or heavy tails, i.e. platykurtic or leptokurtic shapes, as functions of explanatory variables. For different parameter settings, some simulations are performed to investigate the behavior of the estimators. The potentiality of the new regression model is illustrated by means of a real motor vehicle insurance data set.
One of the key features in regression models consists in selecting appropriate characteristics that explain the behavior of the response variable, in which stepwise-based procedures occupy a prominent position. In this paper we performed several simulation studies to investigate whether a specific stepwise-based approach, namely Strategy A, properly selects authentic variables into the generalized additive models for location, scale and shape framework, considering Gaussian, zero inflated Poisson and Weibull distributions. Continuous (with linear and nonlinear relationships) and categorical explanatory variables are considered and they are selected through some goodness-of-fit statistics. Overall, we conclude that the Strategy A greatly performed.