Abstract: Information identities derived from entropy and relative entropy can be useful in statistical inference. For discrete data analyses, a recent study by the authors showed that the fundamental likelihood structure with categorical variables can be expressed in different yet equivalent information decompositions in terms of relative entropy. This clarifies an essential difference between the classical analysis of variance and the analysis of discrete data, revealing a fallacy in the analysis of hierarchical loglinear models. The discussion here is focused on the likelihood information of a three-way contingency table, without loss of generality. A classical three-way categorical data example is examined to illustrate the findings.
Abstract: Relative entropy identities yield basic decompositions of cat egorical data log-likelihoods. These naturally lead to the development of information models in contrast to the hierarchical log-linear models. A recent study by the authors clarified the principal difference in the data likelihood analysis between the two model types. The proposed scheme of log-likelihood decomposition introduces a prototype of linear information models, with which a basic scheme of model selection can be formulated accordingly. Empirical studies with high-way contingency tables are exem plified to illustrate the natural selections of information models in contrast to hierarchical log-linear models.