Abstract: The present article discusses and compares multiple testing procedures (MTPs) for controlling the family wise error rate. Machekano and Hubbard (2006) have proposed empirical Bayes approach that is a resampling based multiple testing procedure asymptotically controlling the familywise error rate. In this paper we provide some additional work on their procedure, and we develop resampling based step-down procedure asymptotically controlling the familywise error rate for testing the families of one-sided hypotheses. We apply these procedures for making successive comparisons between the treatment effects under a simple-order assumption. For example, the treatment means may be a sequences of increasing dose levels of a drug. Using simulations, we demonstrate that the proposed step-down procedure is less conservative than the Machekano and Hubbard’s procedure. The application of the procedure is illustrated with an example.
Some specific random fields have been studied by many researchers whose finite-dimensional marginal distributions are multivariate closed skewnormal or multivariate extended skew-t, in time and spatial domains. In this paper, a necessary and sufficient condition is provided for applicability of such random field in spatial interpolation, based on the marginal distributions. Two deficiencies of the random fields generated by some well-known multivariate distributions are pointed out and in contrast, a suitable skew and heavy tailed random field is proposed. The efficiency of the proposed random field is illustrated through the interpolation of a real data.