The Topp-Leone distribution is an attractive model for life testing and reliability studies as it acquires a bathtub shaped hazard function. In this paper, we introduce a new family of distributions, depending on Topp–Leone random variable as a generator, called the Type II generalized Topp– Leone–G (TIIGTL-G) family. Its density function can be unimodel, leftskewed, right-skewed, and reversed-J shaped, and has increasing, decreasing, upside-down, J and reversed-J hazard rates. Some special models are presented. Some of its statistical properties are studied. Explicit expressions for the ordinary and incomplete moments, quantile and generating functions, Rényi entropy and order statistics are derived. The method of maximum likelihood is used to estimate the model parameters. The importance of one special model; namely; the Type II generalized Topp–Leone exponential is illustrated through two real data sets.
In this paper, we introduce a new four-parameter distribution called the transmuted Weibull power function (TWPF) distribution which e5xtends the transmuted family proposed by Shaw and Buckley [1]. The hazard rate function of the TWPF distribution can be constant, increasing, decreasing, unimodal, upside down bathtub shaped or bathtub shape. Some mathematical properties are derived including quantile functions, expansion of density function, moments, moment generating function, residual life function, reversed residual life function, mean deviation, inequality measures. The estimation of the model parameters is carried out using the maximum likelihood method. The importance and flexibility of the proposed model are proved empirically using real data sets.