Pub. online:8 Aug 2024Type:Statistical Data ScienceOpen Access
Journal:Journal of Data Science
Volume 22, Issue 3 (2024): Special issue: The Government Advances in Statistical Programming (GASP) 2023 conference, pp. 436–455
Abstract
The presence of outliers in a dataset can substantially bias the results of statistical analyses. In general, micro edits are often performed manually on all records to correct for outliers. A set of constraints and decision rules is used to simplify the editing process. However, agricultural data collected through repeated surveys are characterized by complex relationships that make revision and vetting challenging. Therefore, maintaining high data-quality standards is not sustainable in short timeframes. The United States Department of Agriculture’s (USDA’s) National Agricultural Statistics Service (NASS) has partially automated its editing process to improve the accuracy of final estimates. NASS has investigated several methods to modernize its anomaly detection system because simple decision rules may not detect anomalies that break linear relationships. In this article, a computationally efficient method that identifies format-inconsistent, historical, tail, and relational anomalies at the data-entry level is introduced. Four separate scores (i.e., one for each anomaly type) are computed for all nonmissing values in a dataset. A distribution-free method motivated by the Bienaymé-Chebyshev’s inequality is used for scoring the data entries. Fuzzy logic is then considered for combining four individual scores into one final score to determine the outliers. The performance of the proposed approach is illustrated with an application to NASS survey data.
Pub. online:31 Mar 2023Type:Computing In Data ScienceOpen Access
Journal:Journal of Data Science
Volume 21, Issue 2 (2023): Special Issue: Symposium Data Science and Statistics 2022, pp. 333–353
Abstract
High-Order Markov Chains (HOMC) are conventional models, based on transition probabilities, that are used by the United States Department of Agriculture (USDA) National Agricultural Statistics Service (NASS) to study crop-rotation patterns over time. However, HOMCs routinely suffer from sparsity and identifiability issues because the categorical data are represented as indicator (or dummy) variables. In fact, the dimension of the parametric space increases exponentially with the order of HOMCs required for analysis. While parsimonious representations reduce the number of parameters, as has been shown in the literature, they often result in less accurate predictions. Most parsimonious models are trained on big data structures, which can be compressed and efficiently processed using alternative algorithms. Consequently, a thorough evaluation and comparison of the prediction results obtain using a new HOMC algorithm and different types of Deep Neural Networks (DNN) across a range of agricultural conditions is warranted to determine which model is most appropriate for operational crop specific land cover prediction of United States (US) agriculture. In this paper, six neural network models are applied to crop rotation data between 2011 and 2021 from six agriculturally intensive counties, which reflect the range of major crops grown and a variety of crop rotation patterns in the Midwest and southern US. The six counties include: Renville, North Dakota; Perkins, Nebraska; Hale, Texas; Livingston, Illinois; McLean, Illinois; and Shelby, Ohio. Results show the DNN models achieve higher overall prediction accuracy for all counties in 2021. The proposed DNN models allow for the ingestion of long time series data, and robustly achieve higher accuracy values than a new HOMC algorithm considered for predicting crop specific land cover in the US.