When releasing data to the public, a vital concern is the risk of exposing personal information of the individuals who have contributed to the data set. Many mechanisms have been proposed to protect individual privacy, though less attention has been dedicated to practically conducting valid inferences on the altered privacy-protected data sets. For frequency tables, the privacy-protection-oriented perturbations often lead to negative cell counts. Releasing such tables can undermine users’ confidence in the usefulness of such data sets. This paper focuses on releasing one-way frequency tables. We recommend an optimal mechanism that satisfies ϵ-differential privacy (DP) without suffering from having negative cell counts. The procedure is optimal in the sense that the expected utility is maximized under a given privacy constraint. Valid inference procedures for testing goodness-of-fit are also developed for the DP privacy-protected data. In particular, we propose a de-biased test statistic for the optimal procedure and derive its asymptotic distribution. In addition, we also introduce testing procedures for the commonly used Laplace and Gaussian mechanisms, which provide a good finite sample approximation for the null distributions. Moreover, the decaying rate requirements for the privacy regime are provided for the inference procedures to be valid. We further consider common users’ practices such as merging related or neighboring cells or integrating statistical information obtained across different data sources and derive valid testing procedures when these operations occur. Simulation studies show that our inference results hold well even when the sample size is relatively small. Comparisons with the current field standards, including the Laplace, the Gaussian (both with/without post-processing of replacing negative cell counts with zeros), and the Binomial-Beta McClure-Reiter mechanisms, are carried out. In the end, we apply our method to the National Center for Early Development and Learning’s (NCEDL) multi-state studies data to demonstrate its practical applicability.
Pub. online:14 Oct 2021Type:Statistical Data ScienceOpen Access
Journal:Journal of Data Science
Volume 20, Issue 3 (2022): Special Issue: Data Science Meets Social Sciences, pp. 279–302
Abstract
Cognitive Diagnosis Models (CDMs) are a special family of discrete latent variable models widely used in educational, psychological and social sciences. In many applications of CDMs, certain hierarchical structures among the latent attributes are assumed by researchers to characterize their dependence structure. Specifically, a directed acyclic graph is used to specify hierarchical constraints on the allowable configurations of the discrete latent attributes. In this paper, we consider the important yet unaddressed problem of testing the existence of latent hierarchical structures in CDMs. We first introduce the concept of testability of hierarchical structures in CDMs and present sufficient conditions. Then we study the asymptotic behaviors of the likelihood ratio test (LRT) statistic, which is widely used for testing nested models. Due to the irregularity of the problem, the asymptotic distribution of LRT becomes nonstandard and tends to provide unsatisfactory finite sample performance under practical conditions. We provide statistical insights on such failures, and propose to use parametric bootstrap to perform the testing. We also demonstrate the effectiveness and superiority of parametric bootstrap for testing the latent hierarchies over non-parametric bootstrap and the naïve Chi-squared test through comprehensive simulations and an educational assessment dataset.