There is a great deal of prior knowledge about gene function and regulation in the form of annotations or prior results that, if directly integrated into individual prognostic or diagnostic studies, could improve predictive performance. For example, in a study to develop a predictive model for cancer survival based on gene expression, effect sizes from previous studies or the grouping of genes based on pathways constitute such prior knowledge. However, this external information is typically only used post-analysis to aid in the interpretation of any findings. We propose a new hierarchical two-level ridge regression model that can integrate external information in the form of “meta features” to predict an outcome. We show that the model can be fit efficiently using cyclic coordinate descent by recasting the problem as a single-level regression model. In a simulation-based evaluation we show that the proposed method outperforms standard ridge regression and competing methods that integrate prior information, in terms of prediction performance when the meta features are informative on the mean of the features, and that there is no loss in performance when the meta features are uninformative. We demonstrate our approach with applications to the prediction of chronological age based on methylation features and breast cancer mortality based on gene expression features.
Penalized regression provides an automated approach to preform simultaneous variable selection and parameter estimation and is a popular method to analyze high-dimensional data. Since the conception of the LASSO in the mid-to-late 1990s, extensive research has been done to improve penalized regression. The LASSO, and several of its variations, performs penalization symmetrically around zero. Thus, variables with the same magnitude are shrunk the same regardless of the direction of effect. To the best of our knowledge, sign-based shrinkage, preferential shrinkage based on the sign of the coefficients, has yet to be explored under the LASSO framework. We propose a generalization to the LASSO, asymmetric LASSO, that performs sign-based shrinkage. Our method is motivated by placing an asymmetric Laplace prior on the regression coefficients, rather than a symmetric Laplace prior. This corresponds to an asymmetric ${\ell _{1}}$ penalty under the penalized regression framework. In doing so, preferential shrinkage can be performed through an auxiliary tuning parameter that controls the degree of asymmetry. Our numerical studies indicate that the asymmetric LASSO performs better than the LASSO when effect sizes are sign skewed. Furthermore, in the presence of positively-skewed effects, the asymmetric LASSO is comparable to the non-negative LASSO without the need to place an a priori constraint on the effect estimates and outperforms the non-negative LASSO when negative effects are also present in the model. A real data example using the breast cancer gene expression data from The Cancer Genome Atlas is also provided, where the asymmetric LASSO identifies two potentially novel gene expressions that are associated with BRCA1 with a minor improvement in prediction performance over the LASSO and non-negative LASSO.