In this paper, parameters estimation for the generalized Rayleigh (GR) distribution are discussed under the adaptive type-II progressive censoring schemes based on maximum product spacing. A comparison studies with another methods as maximum likelihood, and Bayesian estimation by use Markov chain Monte Carlo (MCMC) are discussed. Also, reliability estimation and hazard function are obtained. A numerical study using real data and Monte Carlo Simulation are performed to compare between different methods.
This article discusses the estimation of the Generalized Power Weibull parameters using the maximum product spacing (MPS) method, the maximum likelihood (ML) method and Bayesian estimation method under squares error for loss function. The estimation is done under progressive type-II censored samples and a comparative study among the three methods is made using Monte Carlo Simulation. Markov chain Monte Carlo (MCMC) method has been employed to compute the Bayes estimators of the Generalized Power Weibull distribution. The optimal censoring scheme has been suggested using two different optimality criteria (mean squared of error, Bias and relative efficiency). A real data is used to study the performance of the estimation process under this optimal scheme in practice for illustrative purposes. Finally, we discuss a method of obtaining the optimal censoring scheme.