Pub. online:10 Jul 2024Type:Statistical Data ScienceOpen Access
Journal:Journal of Data Science
Volume 22, Issue 3 (2024): Special issue: The Government Advances in Statistical Programming (GASP) 2023 conference, pp. 456–468
Abstract
Missing data is a common occurrence in various fields, spanning social science, education, economics, and biomedical research. Disregarding missing data in statistical analyses can introduce bias to study outcomes. To mitigate this issue, imputation methods have proven effective in reducing nonresponse bias and generating complete datasets for subsequent analysis of secondary data. The efficacy of imputation methods hinges on the assumptions of the underlying imputation model. While machine learning techniques such as regression trees, random forest, XGBoost, and deep learning have demonstrated robustness against model misspecification, their optimal performance may necessitate fine-tuning under specific conditions. Moreover, imputed values generated by these methods can sometimes deviate unnaturally, falling outside the normal range. To address these challenges, we propose a novel Predictive Mean Matching imputation (PMM) procedure that leverages popular machine learning-based methods. PMM strikes a balance between robustness and the generation of appropriate imputed values. In this paper, we present our innovative PMM approach and conduct a comparative performance analysis through Monte Carlo simulation studies, assessing its effectiveness against other established methods.