In many medical comparative studies, subjects may provide either bilateral or unilateral data. While numerous testing procedures have been proposed for bilateral data that account for the intra-class correlation between paired organs of the same individual, few studies have thoroughly explored combined correlated bilateral and unilateral data. Ma and Wang (2021) introduced three test procedures based on the maximum likelihood estimation (MLE) algorithm for general g groups. In this article, we employ a model-based approach that treats the measurements from both eyes of each subject as repeated observations. We then compare this approach with Ma and Wang’s Score test procedure. Monte Carlo simulations demonstrate that the MLE-based Score test offers certain advantages under specific conditions. However, this model-based method lacks an explicit form for the test statistic, limiting its potential for further development of an exact test.