In this paper, we propose a new generalization of exponentiated modified Weibull distribution, called the McDonald exponentiated modified Weibull distribution. The new distribution has a large number of well-known lifetime special sub-models such as the McDonald exponentiated Weibull, beta exponentiated Weibull, exponentiated Weibull, exponentiated expo- nential, linear exponential distribution, generalized Rayleigh, among others. Some structural properties of the new distribution are studied. Moreover, we discuss the method of maximum likelihood for estimating the model parameters.
We introduce the four-parameter Kumaraswamy Gompertz distribution. We obtain the moments, generating and quantilefunctions, Shannon and Rényi entropies, mean deviations and Bonferroni and Lorenz curves. We provide a mixture representation for the density function of the order statistics. We discuss the estimation of the model parameters by maximum likelihood. We provide an application a real data set that illustrates the usefulness of the new model.
The censoring arises when exact lifetimes are only partially known, and it is useful in life testing experiments for time and cost restrictions. Especially, when some sample values at either or both extremes might have been adulterated. In present article, the Bayes estimation for unknown parameter of Gompertz distribution has been addressed based on three different censoring criterions. The performances of the procedures are illustrated by a simulation technique.
A new distribution called the log generalized Lindley-Weibull (LGLW) distribution for modeling lifetime data is proposed. This model further generalizes the Lindley distribution and allows for hazard rate functions that are monotonically decreasing, monotonically increasing and bathtub shaped. A comprehensive investigation and account of the mathematical and statistical properties including moments, moment generating function, simulation issues and entropy are presented. Estimates of model parameters via the method of maximum likelihood are given. Real data examples are presented to illustrate the usefulness and applicability of this new distribution.
In this paper an attempt has been made to analyze the child mortality by use of a hazard model in Bayesian environment, family effect through multiplicative random effect is also incorporated in the model. For fitting this model real data has taken from District Level Household and Facility Survey (DLHS)-3. The largest state (in population) of India i.e. Uttar Pradesh data is taken for analysis. Deviance information criteria are used for comparison of models. It found that the model with family frailty gives better fit. All the analysis is performed in winBUGS software, which is used Markov chain monte carlo simulation under gibbs sampling.
Probabilistic topic models have become a standard in modern machine learning to deal with a wide range of applications. Representing data by dimensional reduction of mixture proportion extracted from topic models is not only richer in semantics interpretation, but could also be informative for classification tasks. In this paper, we describe the Topic Model Kernel (TMK), a topicbased kernel for Support Vector Machine classification on data being processed by probabilistic topic models. The applicability of our proposed kernel is demonstrated in several classification tasks with real world datasets. TMK outperforms existing kernels on the distributional features and give comparative results on nonprobabilistic data types.
Abstract: This paper evaluates the efficacy of a machine learning approach to data fusion using convolved multi-output Gaussian processes in the context of geological resource modeling. It empirically demonstrates that information integration across multiple information sources leads to superior estimates of all the quantities being modeled, compared to modeling them individually. Convolved multi-output Gaussian processes provide a powerful approach for simultaneous modeling of multiple quantities of interest while taking correlations between these quantities into consideration. Experiments are performed on large scale data taken from a mining context.
The classical works in finance and insurance for modeling asset returns is the Gaussian model. However, when modeling complex random phenomena, more flexible distributions are needed which are beyond the normal distribution. This is because most of the financial and economic data are skewed and have “fat tails”. Hence symmetric distributions like normal or others may not be good choices while modeling these kinds of data. Flexible distributions like skew normal distribution allow robust modeling of high-dimensional multimodal and asymmetric data. In this paper, we consider a very flexible financial model to construct comonotonic lower convex order bounds in approximating the distribution of the sums of dependent log skew normal random variables. The dependence structure of these random variables is based on a recently developed generalized multivariate skew normal distribution, known as unified skew normal distribution. The approximations are used to calculate the risk measure related to the distribution of terminal wealth. The accurateness of the approximation is investigated numerically. Results obtained from our methods are competitive with a more time consuming method known as Monte Carlo method.
Providing a new distribution is always precious for statisticians. A new three parameter distribution called the gamma normal distribution is defined and studied. Various structural properties of the new distribution are derived, including some explicit expressions for the moments, quantile and generating functions, mean deviations, probability weighted moments and two types of entropy. We also investigate the order statistics and their moments. Maximum likelihood techniques are used to fit the new model and to show its potentiality by means of two examples of real data. Based on three criteria, the proposed distribution provides a better fit then the skew-normal distribution.
The generalized gamma model has been used in several applied areas such as engineering, economics and survival analysis. We provide an extension of this model called the transmuted generalized gamma distribution, which includes as special cases some lifetime distributions. The proposed density function can be represented as a mixture of generalized gamma densities. Some mathematical properties of the new model such as the moments, generating function, mean deviations and Bonferroni and Lorenz curves are provided. We estimate the model parameters using maximum likelihood. We prove that the proposed distribution can be a competitive model in lifetime applications by means of a real data set.