This study investigates whether Support Vector Machine (SVM) can be used to predict the problem solving performance of students in the computerbased learning environment. The SVM models using RBF, linear, polynomial and sigmoid kernels were developed to estimate the probability for middle school students to get mathematics problems correct at their first attempt without using hints available in the computer-based learning environment based on their problem solving performance observed in the past. The SVM models showed better predictions than the standard Bayesian Knowledge Tracing (BKT) model, one of the most widely used prediction models in educational data mining research, in terms of Area Under the receiver operating characteristic Curve (AUC). Four SVM models got AUC values from 0.73 to 0.77, which is approximately 29% improvement, compared to the standard BKT model whose AUC was 0.58.
Abstract: We introduce a new class of continuous distributions called the Ku maraswamy transmuted-G family which extends the transmuted class defined by Shaw and Buckley (2007). Some special models of the new family are provided. Some of its mathematical properties including explicit expressions for the ordinary and incomplete moments, generating function, Rényi and Shannon entropies, order statistics and probability weighted moments are derived. The maximum likelihood is used for estimating the model parameters. The flexibility of the generated family is illustrated by means of two applications to real data sets.
Abstract: Accelerated life testing (ALT) has gained greater importance because of dealing with high reliability units. As a result, there is a big need to use a goodness of fit (GOF) technique for testing the underlying lifetime distribution. But there is a difficulty due to the existence of several stress levels with different samples of units at each level. Then, the choice of a certain GOF technique is based on its capability to combine the failure times from all stress levels to reach a conclusion about the adequacy of a certain lifetime distribution at each stress level. In this paper, the extended Neyman’s smooth test (ENST) is chosen. It is then modified in order to be used in validating the distributional assumption of accelerated failure time (AFT) model. This modified method is called; the adapted extended Neyman’s smooth test (AENST). It is applied to test for both Weibull and exponential distributions in case of constant stress under complete sampling. To check the performance of the AENST, a comparison is made with the conditional probability integral transformation test (CPITT) via a simulation study. Moreover, a real data set is provided to illustrate the application of the introduced AENST. The results revealed that the AENST is a powerful test comparing with the CPITT. Thus, the AENST is recommended for testing the AFT models.
Abstract: In this paper we introduce bivariate Weibull distributions derived from copula functions in presence of cure fraction, censored data and covariates. Two copla functions are explored: the FGM (Farlie - Gumbel Morgenstern) copula and the Gumbel copula. Inferences for the proposed models are obtained under the Bayesian approach, using standard MCMC (Markov Chain Monte Carlo) methods. An illustration of the proposed methodology is given considering a medical data set.
Abstract: This paper introduces the beta linear failure rate geometric (BLFRG) distribution, which contains a number of distributions including the exponentiated linear failure rate geometric, linear failure rate geometric, linear failure rate, exponential geometric, Rayleigh geometric, Rayleigh and exponential distributions as special cases. The model further generalizes the linear failure rate distribution. A comprehensive investigation of the model properties including moments, conditional moments, deviations, Lorenz and Bonferroni curves and entropy are presented. Estimates of model parameters are given. Real data examples are presented to illustrate the usefulness and applicability of the distribution.
Abstract: In this study, first exit time of a compound Poisson process with positive jumps and an upper horizontal boundary is considered. An explicit formula is derived for the mean first exit time associated with the compound Poisson process. Finally, an application on traffic accidents is given to illustrate the usage of the mean first exit time.
Abstract: Incomplete data are common phenomenon in research that adopts the longitudinal design approach. If incomplete observations are present in the longitudinal data structure, ignoring it could lead to bias in statistical inference and interpretation. We adopt the disposition model and extend it to the analysis of longitudinal binary outcomes in the presence of monotone incomplete data. The response variable is modeled using a conditional logistic regression model. The nonresponse mechanism is assumed ignorable and developed as a combination of Markov’s transition and logistic regression model. MLE method is used for parameter estimation. Application of our approach to rheumatoid arthritis clinical trials is presented.
Abstract:In this paper, for evaluating and comparing the heterogeneous balance-variation order pair of any two decision-making trial and evaluation laboratory (DEMATEL) theories, in which one has larger balance and smaller variation, and on the contrary, the other one has smaller balance and larger variation, the first author proposed a useful integrated validity index to evaluate any DEMATEL theory by combining Liu's balanced coefficient and Liu's variation coefficient .Using this new validity index, three kinds of DEMATELs with a same direct relational matrix, including the traditional DEMATEL, shrinkage DEMATEL and balance DEMATEL, are compared, a simple validity experiment is conducted, the results show that the balance DEMATEL has the best performance, the performance of the shrinkage coefficient is better than that of the traditional DEMATEL.