The last decade has seen a vast increase of the abundance of data, fuelling the need for data analytic tools that can keep up with the data size and complexity. This has changed the way we analyze data: moving from away from single data analysts working on their individual computers, to large clusters and distributed systems leveraged by dozens of data scientists. Technological advances have been addressing the scalability aspects, however, the resulting complexity necessitates that more people are involved in a data analysis than before. Collaboration and leveraging of other’s work becomes crucial in the modern, interconnected world of data science. In this article we propose and describe an open-source, web-based, collaborative visualization and data analysis platform RCloud. It de-couples the user from the location of the data analysis while preserving security, interactivity and visualization capabilities. Its collaborative features enable data scientists to explore, work together and share analyses in a seamless fashion. We describe the concepts and design decisions that enabled it to support large data science teams in the industry and academia.
The National Association of Stock Car Auto Racing (NASCAR) is ranked among the top ten most popular sports in the United States. NASCAR events are characterized by on-track racing punctuated by pit stops since cars must refuel, replace tires, and modify their setup throughout a race. A well-executed pit stop can allow drivers to gain multiple seconds on their opponents. Strategies around when to pit and what to perform during a pit stop are under constant evaluation. One currently unexplored area is publically available communication between each driver and their pit crew during the race. Due to the many hours of audio, manual analysis of even one driver’s communications is prohibitive. We propose a fully automated approach to analyze driver–pit crew communication. Our work was conducted in collaboration with NASCAR domain experts. Audio communication is converted to text and summarized using cluster-based Latent Dirichlet Analysis to provide an overview of a driver’s race performance. The transcript is then analyzed to extract important events related to pit stops and driving balance: understeer (pushing) or oversteer (over-rotating). Named entity recognition (NER) and relationship extraction provide context to each event. A combination of the race summary, events, and real-time race data provided by NASCAR are presented using Sankey visualizations. Statistical analysis and evaluation by our domain expert collaborators confirmed we can accurately identify important race events and driver interactions, presented in a novel way to provide useful, important, and efficient summaries and event highlights for race preparation and in-race decision-making.
Pub. online:29 Apr 2024Type:Education In Data ScienceOpen Access
Journal:Journal of Data Science
Volume 22, Issue 2 (2024): Special Issue: 2023 Symposium on Data Science and Statistics (SDSS): “Inquire, Investigate, Implement, Innovate”, pp. 333–351
Abstract
By its nature, data science uses ideas and methodologies from computer science and statistics, along with field-specific knowledge, to describe, learn and predict. Recently, storytelling has been highlighted as an important extension of more traditional data science skills such as coding and modeling. Three courses in our new Master in Data Science and Analytic Storytelling program were designed to include interdisciplinary modules, mainly taught by faculty in storytelling-related disciplines, such as Communication and Art & Design. These courses were PDAT 622: Narrative, Argument, and Persuasion in Data Science; PDAT 624: Principles of Design in Data Visualization; and PDAT 625: Big Data Ethics and Security.
Our first cohort serves as a natural case study, allowing us to reflectively analyze our materials and an informal student survey to explore the effects of interdisciplinarity in these novel courses. Results of the student survey show that students generally found value in these interdisciplinary course components, especially in course “signature assignments,” which allow students to actively engage with course content while reinforcing technical skills from previous courses. Examples of these signature assignments are presented in this paper’s supplementary materials.
Abstract: Many nations’ defence departments use capabilitybased planning to guide their investment and divestment decisions. This planning process involves a variety of data that in its raw form is difficult for decisionmakers to use. In this paper we describe how dimensionality reduction and partition clustering are used in the Canadian Armed Forces to create visualizations that convey how important military capabilities are in planning scenarios and how much capacity the planned force structure has to provide the capabilities. Together, these visualizations give decisionmakers an overview of which capabilities may require investment or may be candidates for divestment.