Bayesian Computation of the Intrinsic Structure of Factor Analytic Models
Volume 7, Issue 3 (2009), pp. 285–311
Pub. online: 4 August 2022
Type: Research Article
Open Access
Published
4 August 2022
4 August 2022
Abstract
Abstract: The study of factor analytic models often has to address two im portant issues: (a) the determination of the “optimum” number of factors and (b) the derivation of a unique simple structure whose interpretation is easy and straightforward. The classical approach deals with these two tasks separately, and sometimes resorts to ad-hoc methods. This paper proposes a Bayesian approach to these two important issues, and adapts ideas from stochastic geometry and Bayesian finite mixture modelling to construct an ergodic Markov chain having the posterior distribution of the complete col lection of parameters (including the number of factors) as its equilibrium distribution. The proposed method uses an Automatic Relevance Determi nation (ARD) prior as the device of achieving the desired simple structure. A Gibbs sampler updating scheme is then combined with the simulation of a continuous-time birth-and-death point process to produce a sampling scheme that efficiently explores the posterior distribution of interest. The MCMC sample path obtained from the simulated posterior then provides a flexible ingredient for most of the inferential tasks of interest. Illustrations on both artificial and real tasks are provided, while major difficulties and challenges are discussed, along with ideas for future improvements.