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Abstract: The study of factor analytic models often has to address two im-
portant issues: (a) the determination of the “optimum” number of factors
and (b) the derivation of a unique simple structure whose interpretation is
easy and straightforward. The classical approach deals with these two tasks
separately, and sometimes resorts to ad-hoc methods. This paper proposes
a Bayesian approach to these two important issues, and adapts ideas from
stochastic geometry and Bayesian finite mixture modelling to construct an
ergodic Markov chain having the posterior distribution of the complete col-
lection of parameters (including the number of factors) as its equilibrium
distribution. The proposed method uses an Automatic Relevance Determi-
nation (ARD) prior as the device of achieving the desired simple structure.
A Gibbs sampler updating scheme is then combined with the simulation
of a continuous-time birth-and-death point process to produce a sampling
scheme that efficiently explores the posterior distribution of interest. The
MCMC sample path obtained from the simulated posterior then provides a
flexible ingredient for most of the inferential tasks of interest. Illustrations
on both artificial and real tasks are provided, while major difficulties and
challenges are discussed, along with ideas for future improvements.

Key words: Birth-and-death process, factor analysis, interpretability, intrin-
sic dimensionality, simple structure, sparsity, posterior simulation.

1. Introduction

1.1 The factor analysis model

Factor Analysis (FA) assumes that a p-dimensional manifest random vector is
made up of highly correlated variables that can be grouped by their correlations.
Under this assumption, variables within a particular group are highly correlated
among themselves, but have relatively small correlations with variables belonging
to a different group. Each group of variables can therefore be thought of as the
representation of a single underlying construct also known as a factor or more
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precisely a common factor. Central to factor analysis is the assumption that
factors are responsible for the observed correlations, the consequence of such an
assumption being that the observed variables are essentially independent given
the factors.

From a modeling standpoint, the above factor analysis assumption implies
that each observable random vector Xi can be expressed as a linear combination
of q < p latent random variables (Fi1, Fi2, · · · , Fiq)> = F i, called common fac-
tors, plus a mean µ = (µ1, µ2, · · · , µp)>, plus p additional sources of variation
(εi1, εi2, · · · , εip)> = εi referred to as idiosyncratic disturbances.

Xi = µ + Λ F i + εi.
(p × 1) (p × 1) (p × q) (q × 1) (p × 1)

For simplicity, it will be assumed that µ = 0. As a result,

Xi = Λ F i + εi.
(p × 1) (p × q) (q × 1) (p × 1)

(1.1)

The matrix Λ ∈ IRp×q is referred to as the matrix of factor loadings. Each element
λij of Λ is called the loading of the ith variable on the jth factor. The orthogonal
FA model assumes that εi and Fi are independent, so that with εi ∼ Np(0,Ψ),
where Ψ = diag(ψ2

1, · · · , ψ2
p). It is easy to see that cov(Xi, F i) = Λ, and that

cov(εi, F i) = E
[
εiF

>
i

]
= 0. All these assumptions imply that the conditional

density of the data given realizations of factor scores is

p(Xi|F i,Λ,Ψ) = (2π)−p/2|Ψ|−1/2

× exp
[
−1

2
(Xi − ΛF i)>Ψ−1(Xi − ΛF i)

]
. (1.2)

From the above (1.2), it is easy to see that the posterior distribution of F is

[F i|Xi,Λ,Ψ] ∼ Nq

(
[Iq + Λ>Ψ−1Λ]−1Λ>Ψ−1Xi, [Iq + Λ>Ψ−1Λ]−1

)
. (1.3)

By integrating F out from p(Xi, F |Λ,Ψ), the marginal density of the data is
given by

p(Xi|Λ,Ψ) = (2π)−p/2|ΛΛ> + Ψ|−1/2 exp
[
−1

2
X>

i

[
ΛΛ> + Ψ

]−1
Xi

]
.(1.4)

For convenience, we will use the notation of (1.5) to refer to the marginal and
the conditional distributions of Xi, respectively.

Xi ∼ Np(0,ΛΛ> + Ψ) and [Xi|F i] ∼ Np(ΛF i,Ψ). (1.5)
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The description of the FA model so far has used Λ and Ψ. Let θ ≡ (Λ,Ψ) denote
the collection of all the parameters of the model. The observed-data likelihood
is then given by

L(θ;X) ∝ |ΛΛ> + Ψ|−
n
2 exp

[
−1

2

n∑
i=1

X>
i

[
ΛΛ> + Ψ

]−1
Xi

]
. (1.6)

On the other hand, treating the factor scores are unknowns in the same way as
parameters, the complete-data likelihood is given by

L(θ;X, F ) ∝ |Ψ|−
n
2 exp

[
−1

2

n∑
i=1

(Xi − ΛF i)>Ψ−1(Xi − ΛF i)

]
. (1.7)

1.2 Position of the problem

The factor analysis model, as we have defined it, has been extensively stud-
ied by statisticians, economists, scientists, machine learning specialists, pattern
recognition engineers and psychometricians. The estimation of the factor loading
matrix Λ in particular has been explored both theoreticians and practitioners.
Although the vast literature on the topic mainly covered the frequentist treat-
ment for decades, it is encouraging to notice that the Bayesian perspective has
recently received the long awaited attention from various authors, amongst whom
Press (1972), Martin and McDonald (1981), Press and Shigemasu (1989), Ihara
and Kano (1995), Press and Shigemasu (1998), Lopes and West (1999), Fokoué
and Titterington (2003), Rowe (2003). This paper proposes a contribution to
the Bayesian perspective on some important issues that arise in factor analytic
modeling. Indeed, besides the important issue of parameter estimation that has
been widely studied from both the frequentist and Bayesian perspectives, two of
the other most commonly studied issues in factor analysis are:

• The search for a unique simple structure: In many applications of fac-
tor analysis, the investigator seeks a unique simple structure for which a
straightforward interpretation can be provided. This is clearly an ill-defined
problem because of the lack of identifiability inherent to the FA model.
Well-posedness is usually achieved by imposing constraints. This paper
explores two ways of obtaining a factor solution that is easy to interpret.

• The determination of the intrinsic number of factors: The expression intrinsic
dimensionality is used throughout this paper to mean the optimum number
of factors. Clearly, for any given factor analysis problem (task), this def-
inition of intrinsic dimensional naturally raises three important questions,
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namely : (a) Does such a number of exist? (b) If such a number exists,
is it unique? (c) What is the method that helps find such a number as
efficiently as possible? Questions (a) and (b) are addressed theoretically in
a later paper. Both ad-hoc and principled methods have been developed to
answer question (c). This paper proposes a Bayesian approach implemented
through the simulation of a stochastic birth-and-death process.

The remainder of this paper is organized as follows: section 2 provides a brief
description of parameter estimation in Bayesian Factor Analysis when q is known
and fixed. In our derivation of full conditional posterior distribution, we will
use the notation [θ∗| · · · ] to denote the conditional distribution of θ∗ given all the
quantities on which it depends. For instance, since the posterior distribution of Λ
depends on Ψ, F and X, it is more complete to write [Λ|Ψ, F ,X]. For simplicity
however, we will simply write [Λ| · · · ], with the implied meaning given earlier.
Section 3 deals with the search for as a simple factor structure. The section first
touches on some ways to address the issue of identifiability in the Bayesian setting,
and concludes with the specification of an Automatic Relevance Determination
prior that achieves a simple factor structure by putting a sparsity pressure on the
space of factor loadings. Section 4 addresses the determination of the number of
factors, beginning with an overview of existing methods, and concluding with the
details of the proposed approach. Section 5 presents numerical results on both
artificial and real data. The last section provides the conclusion and ideas for
future improvements.

2. Bayesian Factor Analysis via Posterior Simulation

In this section, we assume that the number of factors q in known and fixed.
As we shall see later, this is generally either set by the experimenter or estimates
via ad-hoc techniques that will be mentioned later. Now, given a random sample
of size n, the maximum likelihood estimate Λ̂ of the p×q matrix of factor loadings
Λ is given by

Λ̂MLE = arg max
Λ

{
|ΛΛ> + Ψ|−

n
2 exp

[
−1

2

n∑
i=1

X>
i

[
ΛΛ> + Ψ

]−1
Xi

]}
. (2.1)

Unfortunately, it is crucial to note that the form of the variance-covariance
matrix in the observed data likelihood, namely ΛΛ> + Ψ, makes it hard to
derive analytical expressions for estimates of Λ and Ψ. Besides, the numerical
derivation of estimates based on the observed data likelihood runs into a variety
of difficulties.

Recall that, from a Bayesian perspective, the estimation of Λ is based on the
posterior distribution of Λ which itself is obtained by combining a prior on/about
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Λ with the likelihood. More precisely, if p(Λ) is our prior on Λ, then we need to
derive the posterior p(Λ|X) via Bayes rule

p(Λ|X) =
p(Λ)L(Λ;X)

p(X)
∝ p(Λ)L(Λ;X).

The Bayesian estimate of Λ is the conditional (posterior) expectation of Λ given
the data, i.e.,

Λ̂Bayes = E[Λ|X] =
∫

Λp(Λ|X)dΛ. (2.2)

Unfortunately, the estimation of Λ via (2.2) runs into even more problems
than with (2.1). Indeed, because of the complicated expression of the variance-
covariance matrix, no closed-form expression can be derived for p(Λ|X), making
it impossible to compute the needed expectations. This reasoning for Λ is valid
for Ψ, therefore valid for our parameter collection θ = (Λ,Ψ). In other words,
the expression of the likelihood L(θ;X) complicates the estimation from both
the frequentist (MLE) and Bayesian perspective. Fortunately, it turns out that
the complete-data likelihood makes it possible to circumvent some of the above
problems. Indeed, methods such as the Expectation-Maximization (EM) algo-
rithm and its Bayesian counterpart, the Imputation-Posterior algorithm, use the
expression of the complete-data likelihood to derive parameter estimates. Details
of the EM algorithm for Maximum Likelihood estimation can be found in the
standard literature. As for the Imputation-Posterior algorithm, the idea is very
similar to the EM algorithm idea: while the E-step of the EM algorithm uses
expected values of the factor scores to compute an expected likelihood, the I-step
of the Imputation-Posterior algorithm draws n realizations of the factor scores
to form the conditional density of the parameters given the factor scores. In the
same way, while the M-step of the EM algorithm computes the current estimates
of the parameters based on the current expected likelihood, the P-step of the IP
algorithm draws the current set of parameter values based on the current condi-
tional distribution of the parameters given the factor scores. The IP algorithm
so defined is sometimes referred to as the Data Augmentation algorithm for the
obvious reason that the imputed factor scores can be viewed as data augmented
to simplify the estimation task.

The key to the derivation of the data augmentation algorithm for factor anal-
ysis is that, instead of working with the intractable expression of the observed
data posterior

p(θ|X) ∝ L(θ;X)p(θ), (2.3)

one resorts to the complete-data posterior

p(θ, F |X) ∝ L(θ;X,F )p(θ). (2.4)
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One of the greatest appeals of equation (2.4) lies in the fact that suitable choices of
the prior density p(θ) (such as conjugate priors) lead to nice tractable expressions
of the conditional posterior needed to simulated the true posterior.

– The I-step consists in drawing samples from the conditional distribution
of F given X and the current set of parameter values θ(t) = (Λ(t),Ψ(t)).[
F

(t+1)
i |Xi,Λ,Ψ

]
∼ Nq

(
[Iq + Λ>Ψ−1Λ]−1Λ>Ψ−1Xi, [Iq + Λ>Ψ−1Λ]−1

)
.

– The P-step combines the prior density p(θ) with the expression for the
complete-data likelihood L(θ;X, F ) to derive the corresponding full poste-
riors p(θ|X, F ) needed in the Gibbs sampling, namely:

Ψ(t+1) ∼ p(Ψ|F (t+1),Λ(t),X) and Λ(t+1) ∼ p(Λ|F (t+1),Ψ(t+1),X).

The I-step and the P-step are repeated until a large number of draws is collected
to form the sample path. The theoretical study of the convergence of the IP
algorithm and the properties of the estimates is beyond the scope of this paper.
Suffices it to note that after throwing away the initial draws (many thousands of
them), the remaining draws obtained from the IP algorithm are used for estima-
tion and inference about both θ and F . Specifically, we have

Λ̂IP =
1
T

T∑
t=1

Λ(t) and Ψ̂IP =
1
T

T∑
t=1

Ψ(t).

Now, the I-step in the above algorithm does not need the prior distributions
of Λ and Ψ. However, the P-step cannot be done without the prior. It is there-
fore important to provide some guidance as to how the prior is specified. The
complete-data likelihood (1.7) belongs to the regular exponential family of dis-
tributions, and therefore allows a straightforward derivation of conjugate priors.
While this choice is made for mathematical convenience, it also turns out to be
the only computationally viable choice in this context. Martin and McDonald
(1981) and Ihara and Kano (1995) have shown that the use of standard improper
reference priors leads to the Bayesian analogue of what is known in factor anal-
ysis as Heywood cases. In the classical maximum likelihood estimation of the
FA model, it is often convenient to minimise the negative log-likelihood or some
extensions of it. It often happens that the objective function used has a relative
minimum corresponding to negative values for some variances. Such solutions are
clearly inadmissible and are referred to as improper solutions or Heywood cases.
Treated as a function of the variance parameter, the negative likelihood of the
FA model is bounded below away from zero as Ψ2

i tends to zero. For the above
reasons, this paper will use conjugate priors in various forms.
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2.1 Prior specification and posterior derivation

Treating equation (1.7) as a function of Ψ, one can write the likelihood func-
tion as

L(Ψ−1) ∝ |Ψ−1|n/2 exp
[
−1

2
tr(Ψ−1W )

]
, (2.5)

where W =
∑n

i=1 (Xi − ΛF i)(Xi − ΛF i)> = (X − FΛ>)>(X − FΛ>). The
form of (2.5) suggests that a natural conjugate prior for Ψ−1 would be a Wishart
distribution. However, since Ψ−1 is diagonal, (2.5) can be rewritten as

L(Ψ−1) ∝
p∏

i=1

[
ψ−2

i

]n/2 exp
[
−1

2
wiiψ

−2
i

]
, (2.6)

which has the form of a product of Gamma densities, suggesting the use of a
product of Gamma prior densities p(ψ−2

i ) for each ψ−2
i . To write the likelihood

as a function of Λ,

(X − FΛ>)>(X − FΛ>) = (X − F Λ̂
>
)>(X − F Λ̂

>
)

+ (Λ> − Λ̂
>
)>F>F (Λ> − Λ̂

>
).

Since (X − F Λ̂
>
)>(X − F Λ̂

>
) does not depend on Λ, one can then write

L(Λ) ∝ exp
[
−1

2
trΨ−1(Λ> − Λ̂

>
)>(F>F )(Λ> − Λ̂

>
)
]

. (2.7)

A slightly elaborate algebraic manipulation of (2.7) suggests that a Gaussian
distribution would be a natural conjugate prior for each row Λi of Λ. See Fokoué
(2004) for more details. From the form suggested by the expression of the likeli-
hood function, the prior density can be specified either with Λ dependent on Ψ
as

p(Λ,Ψ) = p(Ψ)p(∆)p(Λ |Ψ, ∆), (2.8)

or simply with Λ independent of Ψ, ie

p(Λ,Ψ) = p(Ψ)p(∆)p(Λ |∆). (2.9)

It turns out in practice that both specifications perform equally well. For sim-
plicity, the prior as defined by (2.9) will be used throughout this paper. The
matrix ∆ in the above prior specifications is the matrix of hyperparameters.
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As mentioned earlier, the Wishart distribution for Ψ−1 reduces to a product
of Gamma distributions because of the diagonality of Ψ. In other words, with
ψ−2

i ∼ Ga(α/2, τ/2), the prior density for Ψ−1 becomes

p(ψ−1|α, τ) =
p∏

i=1

p(ψ−2
i |α, τ) ∝

p∏
i=1

[
ψ−2

i

] 1
2
α−1 exp

[
−1

2
τψ−2

i

]
. (2.10)

If (2.10) and (2.6) are combined, and wii is used to denote the ith diagonal entry
of the matrix W , then it is easy to derive a Gamma full conditional distribution
for each ψ−2

i , that is,

[ψ−2
i | · · · ] ∼ Ga

(
n + α

2
,
wii + τ

2

)
, for i = 1, · · · , p

The first assumption made for the distribution of Λ is that its rows are a priori
independent. From the previous section, conjugacy suggests that each row Λi is
normally distributed. Specifically, a zero mean Gaussian prior with covariance
matrix ∆0 will be used for each Λi, ie

p(Λi |∆0) = (2π)−q/2|∆0|−1/2 exp
[
−1

2
Λ>

i ∆−1
0 Λi

]
(2.11)

where ∆0 ∈ IRq×q is the prior covariance matrix common to all the rows Λi of
Λ. With a little bit of algebra, the full conditional posterior for each row Λi of
Λ is found to be Gaussian with mean mi and covariance matrix Ki given by

K−1
i = ∆−1

0 + ψ−2
i (F>F ), mi =

[
ψ2

i ∆
−1
0 + (F>F )

]−1
F>Xi (2.12)

where Xi is the i-th column of the data matrix X.

3. Simple Factor Structure and Interpretability

The FA model is inherently a non-identified model: for a given set of data,
there exists an infinity of orthogonal transformations of the matrix of factor
loadings that would produce the same covariance structure. To see this more
clearly, let us assume q > 1, and let H be any q × q orthogonal matrix, so that
HH> = H>H = Iq. Equation (1.1) can be written

X = ΛF + ε = ΛHH>F + ε = Λ∗F ∗ + ε (3.1)

where Λ∗ = ΛH and F ∗ = H>F . It is easy to see that E(F ∗) = H>E(F ) = 0,
and that cov(F ∗) = H>cov(F )H = H>H = Iq. In other words, the factors
F and F ∗ = H>F have the same statistical properties. Looking at equations
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(1.1) and (3.1), it is therefore impossible on the basis of observations on X, to
distinguish the matrices of factor loadings Λ and Λ∗. Moreover, Σ = ΛΛ>+Ψ =
ΛHH>Λ> + Ψ = (Λ∗) (Λ∗)> + Ψ, which means that although different in
general, Λ and Λ∗ both generate the same covariance matrix Σ, and therefore
the same representation of the data. One can therefore obtain an infinite number
of equivalent matrices of factor loadings by simply applying successive orthogonal
transformations to an initial one.

The search for a unique and easily interpretable factor solution is generally
addressed by imposing constraints to identify a unique set of model parameters.
In this vein, one of the most widely used approaches to identifiability and simple
structure search consists in setting some of the elements of the matrix of factor
loadings to some pre-assigned values, usually zero. Besides the pre-assignment
approach just described, rotation techniques like Kaiser’s varimax rotation of the
initial solution are used to find a simple structure, but details of such are not
provided in this paper. Equation (3.2) provides an example of a constrained
structure.

Λ =



λ11 0 0 · · · 0 0
λ21 λ22 0 · · · 0 0
λ31 λ32 λ33 · · · 0 0
...

...
...

. . .
...

...
λq−1,1 λq−1,2 λq−1,3 · · · λq−1,q−1 0
λq,1 λq,2 λq,3 · · · λq,q−1 λq,q
...

...
...

. . .
...

...
λp,1 λp,2 λp,3 · · · λp,q−1 λp,q


. (3.2)

Lopes and West (1999) have satisfactorily used this particular constrained struc-
ture of the factor loadings matrix in their application of factor analysis to portfolio
management. This approach is widely used by psychometricians and other factor
analysts who greatly value interpretability. It is important to note that this ap-
proach requires the need for the investigator to make use of his/her subjectivity
and prior knowledge about the problem under consideration.

It turns out that the implementation of this constrained FA model is rather
straightforward in the Bayesian posterior simulation context. In fact, such a
restriction requires only a very minor modification in the derivation of the full
conditional distribution of Λ.

In this case, a univariate Gaussian prior is assumed for each of the non-
preassigned λij , that is

λij ∼ N (0, δ−1
0 )
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F (i) ∈ IRn×i is used to denote the n × i matrix containing the first i columns of
F . The mean vector and covariance matrix of the full conditional distribution of
Λi for the first q rows (i = 1, · · · , q) are determined as follows:

K−1
i = δ0Ii + ψ−2

i (F>
(i)F (i)) and mi =

[
ψ2

i δ0Ii + (F>
(i)F (i))

]−1
F>

(i)X
i (3.3)

For i = (q + 1), · · · , p, one gets

K−1
i = δ0Iq + ψ−2

i (F>F ) and mi =
[
ψ2

i δ0Iq + (F>F )
]−1

F>Xi (3.4)

MacKay (1992) and Neal (1996) first proposed and applied the idea of Au-
tomatic Relevance Determination (ARD) in their Bayesian Analysis of Neural
Networks and related models. The ARD idea has been adapted by Tipping
(2001) in his derivation of the Relevance Vector Machine as a tool for obtaining
a sparse function representation despite the use of a Gaussian prior. This paper
adapts the ARD prior idea to Bayesian Factor Analysis. The key idea is that the
task of searching for a simple factor structure that is easy and straightforward to
interpret is in a sense equivalent to searching for a sparse representation of the
factor model. With the embedded sparsity introduced through the prior, the pro-
posed approach produces an estimate of Λ that has a simple structure with many
zeros, making interpretation easy and straightforward. Following from Tipping
(2001)’s development of the Relevance Vector Machine, sparsity pressure in the
space of Λ may be achieved by specifying an independent Gaussian prior for
each element λij of Λ. Conditional on a precision hyperparameter δij , the prior
density for each λij is given by

p(λij | δij) = N (λij | 0, δ−1
ij ) (3.5)

Each row Λi of Λ therefore has conditional prior density

p(Λi |∆i) = Nq(Λi | 0, ∆i) (3.6)

where ∆i = diag(δ−1
i1 , δ−1

i2 , · · · , δ−1
iq ). For each δij , the following Gamma prior will

be used:

p(δij | a, b) = Ga(δij | a, b) (3.7)

As shown in Tipping (2001), the use of a Gamma prior for each δij leads to a
marginal prior for Λi that is a product of independent Student’s t-distributions.
With the degrees of freedom being small, the product of independent Student-t
distributions implies that the distribution of Λi is concentrated along the axes
or at the origin, which is precisely the type of structure perceived as simple and
interpretable in factor analysis. This is illustrated using a two-dimensional case
to show that with such a prior the probability mass is concentrated both at the
origin and along the “spines” where one of the coefficients λij is zero.
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Figure 1: The 2-dimensional marginal prior for a row Λi

As Figure 1 shows, it is “surprisingly” possible to achieve a sparse represen-
tation using a Gaussian prior. From a practical standpoint however, a bit of
thresholding might be needed, and this is done in this case by setting to zero
(declared irrelevant) factor loadings λij whose precision tends to “infinity”. (ie
gets too large beyond a pre-specified threshold). This approach to sparsity has
been used extensively, and has produced many satisfactory results in a variety of
settings. The present use of it is the first such adaptation to the factor analysis
context, and has produced satisfactory results as well.

It is easy to see that the full conditional posterior for each row Λi of Λ is
found to be Gaussian with mean mi and covariance matrix Ki given by

K−1
i = ∆−1

i + ψ−2
i (F>F ), mi =

[
ψ2

i ∆
−1
i + (F>F )

]−1
F>Xi (3.8)

where Xi is the i-th column of the data matrix X.
The conjugate Gamma prior for δij makes the derivation of its posterior

straightforward.

p(∆i | · · · ) ∝ p(∆i)p(Λi |∆i)

Since both the λij ’s and the δij ’s are assumed to be a priori independent,

p(δij | · · · ) ∝ N (λij | 0, δij)Ga(δij | a, b)
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As a result,

[δij | · · · ] ∼ Ga

(
a +

1
2
, b +

1
2
λ2

ij

)
.

In a sense, this can be viewed as the Bayesian alternative to Kaiser’s varimax
rotation, since the sparse representation implies a very high communality. How-
ever, unlike the Kaiser’s varimax that requires two stages and some subjectivity
about when to stop rotating, the proposed method achieves both the esimation
and the simple structure simultaneously.

From all above, a Data Augmentation scheme for Factor Analysis can be
summarized as:

Data Augmentation for Factor Analysis

• I-step -
[F |X,Λ,Ψ] ∼ Nq

(
[Iq + Λ>Ψ−1Λ]−1Λ>Ψ−1X, [Iq + Λ>Ψ−1Λ]−1

)
• P-step -

[Λi | · · · ] ∼ Nq (mi, Ki) , i = 1, · · · , p

[δij | · · · ] ∼ Ga

(
a +

1
2
, b +

1
2
λ2

ij

)
, i = 1, · · · , p and j = 1, · · · , q

[
ψ−2

i | · · ·
]

∼ Ga

(
n + α

2
,
wii + τ

2

)
, i = 1, · · · , p

4. Estimating the Intrinsic Dimensionality

While there are many cases in practice where the number of factors q is
known and/or fixed, as it has been assumed so far, it must be said that this value
is very often unknown in real-life applications, and the study of the FA model
therefore needs to address its uncertainty. At the root of model determination
in Factor Analysis lies the difficult issue of finding and/or defining principled
methods to decide what makes a particular factor important. In fact, for FA, this
difficult problem has been one of the burning issues over the years, captivating the
interests of researchers from both the likelihood-based and Bayesian perspectives.
Some of the references on this topic include Krzanowski and Marriott (1994),
Krzanowski and Marriott (1995) on the frequentist side, and Press (1972), Press
and Shigemasu (1998), Lopes and West (1999) and Fokoué and Titterington
(2003) on the Bayesian side.
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A crude upper bound for the number of factors is p, the original dimensional-
ity of the input space, while a crude lower bound is simply 1, the simplest factor
model one can have. These crude bounds are clearly not very helpful, it is inter-
esting to derive more useful ones. Recall that the ideal is to find a factor structure
that is: (a) unique; (b) simple and (c) intrinsic. The marginal distribution of the
observed random variable X ∈ Rp has covariance Σ = ΛΛ> +Ψ. Since Σ is sym-
metric, it has p(p+1)/2 free parameters. If a sparse representation or a structure
constrained as in (3.2) has q(q − 1)/2 zero values, then to guarantee a unique
solution, it is necessary to determine q such that p(q +1)− 1

2q(q−1) ≤ 1
2p(p+1),

which means

(p + q) ≤ (p − q)2 (4.1)

From (4.1) an upper bound on the number of factors to be included in a model
is given by

q ≤ 1
2
(2p + 1 −

√
8p + 1). (4.2)

It is important to note that there are situations where solutions satisfying con-
straint (4.1) might not provide an adequate fit for the data. In fact, given a data
set, a fundamental question (without an obvious answer) is whether there exists
a matrix of factor loadings Λ such that the model in equation (1.1) adequately
fits the data. An exploration of this issue and many other related topics of FA
can be found in such references as Bartholomew (1987), Everitt (1984) and Press
(1972) amongst others.

Many of the most widely used methods are based on various functions of
the eigenvalues of the sample correlation matrix. While such methods produce
satisfactory results, the fact of focusing only on the eigenvalues could lead to the
neglect of vital information: almost all the criteria used to decide on the number
of factors to retain are essentially ad hoc (eigenvalues less than 1) and often
subjective (elbow of the screeplot) criteria that in some special cases would either
overestimate or underestimate the adequate number of factors. For instance, if
one variable is virtually independent of all the rest, it will appear as a separate
component with variance slightly less than 1, but there is no reason to suppose
that such a variable is uninformative. Thus, while this method may provide rough
estimates of the number of factors, there is a clear need for more principled and
objective methods for estimating the intrinsic dimensionality of factor analytic
models.

With the normality assumption for the manifest variable X, maximum like-
lihood via the EM algorithm is straightforward in factor analysis. On the other
hand, the goodness-of-fit of the resulting q-factor model can be judged using
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a classical likelihood ratio test, with the null hypothesis stating the covariance
matrix of X has the structure Σ = ΛΛ> + Ψ, and the alternative saying the
covariance matrix is unconstrained. Under the normal assumption, it is easy to
see that the test statistic for the test is

ω = n(tr(Σ̂
−1

S) − log |Σ̂−1
S| − p), (4.3)

where Σ̂ = Λ̂Λ̂
>

+Ψ̂ is the estimate of Σ, and S is the sample covariance matrix.
A standard result in the literature shows that if Ψ > 0, then ω is asymptotically
χ2 distributed with ν = 1

2

[
(p − q)2 − (p + q)

]
degrees of freedom under the null

hypothesis. An alternative setting proposed by Bartlett (1954) suggests to replace
n in (4.3) by n−1− 1

6(2p+5)− 2
3q. It must be said that the value of ν used above

presupposes that one has efficiently fitted the model, and therefore that instead
of the p(q +1) parameters of the unrestricted FA model, only p(q +1)− 1

2q(q−1)
parameters have to be estimated.

Likelihood-based approaches to the determination of intrinsic factor model
dimensionality mainly consist in sequentially applying a series of likelihood ratio
tests. In practice, one starts with q = 1 (single factor model), then fits successive
values and tests the goodness-of-fit, until the test produces a non-significant result
indicating in a sense that the fit of the model is adequate. However, while this
method appears as an objective procedure for estimating q, it is not strictly
valid as a hypothesis test as argued by Krzanowski and Marriott (1995), since
no adjustment is made to the significance level to allow for its sequential nature.
On the other hand, the fact of having a non-significant p-value cannot be taken
to indicate that the optimum value of q has been found, since large values of q
correspond to more parameters and therefore better fits, obviously at the expense
of more complex models and risks of overfitting. For the “best” model to be
determined, there needs to be a trade-off between the number of parameters and
the goodness-of-fit. In this likelihood-based framework, one way to determine the
“best” model is to use Akaike’s Information Criterion, which consists of selecting
the model that minimises AIC as defined in (4.4).

AIC = −2 log(maximised likelihood) + 2(number of parameters fitted). (4.4)

In the factor analysis context, the above criterion (4.4) is equivalent to choosing
q that minimises ω − 2ν, as suggested by Akaike (1987), where ω and ν are re-
spectively the test statistic and the number of degrees of freedom. It has been
noticed in practice that AIC tends to overfit models. In the analysis of mix-
tures for instance, AIC tends to overestimate the correct number of components.
The Bayesian Information Criterion (BIC)of equation (4.5) is often used as an
alternative to AIC.

BIC = −2 log(maximised likelihood) + log n(number of parameters fitted) (4.5)
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The reason why BIC performs better than AIC can be explained simply as follows:
the penalty term of BIC penalises complex models more heavily than AIC, whose
penalty term does not depend on the sample size. BIC therefore reduces the
tendency of the AIC criterion to overfit models.

The determination of the optimum number of factors has been studied before
in the Bayesian setting. Press and Shigemasu (1998) approached the problem by
deriving an “approximate” posterior probability mass function P (q |X) for the
number of factors. A potential drawback to this approach lies in the approximate
nature of the posterior mass function: it would seem that in some very simply
problems as shown in the next section, the approximation error can lead to rather
poor estimations of the number of factors. The approach proposed in this paper
avoids this approximation pitfall by constructing an ergodic Markov chain whose
final sample path provided ingredients for the exact probability mass function
P (q |X).

4.1 Elements of stochastic model selection for FA

The approach used here is based on the construction of a Markov chain having
the posterior distribution of the complete collection of all the unknowns (param-
eters and q) as its equilibrium distribution. From a Bayesian perspective, Green
(1995)’s Reversible Jump Markov Chain Monte Carlo (RJMCMC) algorithm is
one such algorithm. Lopes and West (1999) applied an adaptation of RJMCMC
to the factor analysis model with an unknown number of common factors, and
obtained good results on both synthetic and real-life problems. More recently,
Stephens (2000), using ideas from stochastic geometry and spatial statistics, de-
veloped an alternative to RJMCMC, based on the simulation of a continuous-time
birth-and-death Markov marked point process. Stephens (2000) applied the de-
rived Birth-and-Death MCMC (BDMCMC) method to mixtures of univariate and
bivariate Gaussians with unknown numbers of components, and obtained promis-
ing results. BDMCMC was later successfully adapted by Fokoué and Titterington
(2003) in the study of Mixtures of Factor Analyzers. Despite the fact that RJM-
CMC is based on a discrete-time Markov process while BDMCMC is based on
a continuous time Markov process, the two methods are essentially equivalent in
that they both successfully construct ergodic Markov chains in spaces of varying
dimensions. In fact, BDMCMC can be thought of as a limit of RJMCMC. How-
ever, for practical reasons and to a certain extent for computational convenience,
this paper adopts an approach closer to BDMCMC.

The central idea behind this approach is to view and treat each parameter
that directly affects the dimensionality of the model as a point in the parameter
space, and adapt the methodology of point process simulation to help construct a
Markov chain with the posterior distribution of the parameters as its equilibrium
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distribution.
Geometrically speaking, the columns of Λ can be viewed as defining the axes

of the lower-dimensional latent space (coordinate system) of factors. Since a ro-
tation is a non-singular orthogonal transformation, and a permutation of columns
is particular type of rotation, the factor solution is therefore invariant to permu-
tations of axes. Equivalently, it can be said that FA has a posterior distribu-
tion that is invariant to permutations of the order of their parameters. From a
stochastic simulation perspective, the collection of parameters can therefore be
viewed as a random configuration or point process. This complete collection of
our model parameters is now given by θ = {q,Λ,Ψ}. If one assumes that q is
unknown a priori, the aim from a posterior simulation perspective now extends
to the construction of an ergodic Markov chain with the joint posterior distribu-
tion p(q,Λ,Ψ|X) as its equilibrium distribution. In one of the previous sections,
Data Augmentation was used to construct a Markov chain with p(Λ,Ψ|q,X) as
its equilibrium distribution. With q unknown, there is the need to accommodate
the new counting random variable q. Intuitively, the overall sampling scheme
takes on a Gibbs sampler-like form, with each iteration consisting of two steps:

Step 1: Birth-and-death: q(t+1) ∼ p(q|Λ(t),Ψ(t),X)

Step 2: Gibbs sampling: (Λ(t+1),Ψ(t+1)) ∼ p(Λ,Ψ|q(t+1),X)

In the above scheme, Step 1 allows us to draw a new value of q = q(t+1) by
simulating a birth-and-death Markov point process, the main difference with a
classical algorithm of this type being that the dimension of the parameter vector
is allowed to vary at each iteration. Step 2 draws a new set of model parameters
via Data Augmentation, using the value of q obtained from the run of the birth-
and-death process.

The simulation of the type of birth-and-death process used in this paper has
been extensively studied and applied in recent years, and the reader is referred
to references like Stoyan et al. (1995) and Barndorff-Nielsen et al. (1999) for
comprehensive coverage of applications of such sampling schemes in stochastic
geometry and spatial statistics. Baddeley (1994) and van Lieshout (1994) also
provide very useful insights into other aspects of such sampling schemes. Stephens
(2000) provides a detailed account of his application of BDMCMC to mixtures.

4.2 Birth-and-death point process for factor analysis

Let M(t) = {q(t),Λ(t)
1 ,Λ(t)

2 , · · · ,Λ(t)
i , · · · ,Λ(t)

q(t) ,Ψ(t)} define a random configu-

ration at time t. Additionally, let M
(t)
−i = M(t)\{Λ(t)

i } be the random configuration

M(t) without Λ(t)
i . By virtue of the fact that p(q,Λ,Ψ|X) ≡ p(M|X) is invari-
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ant under permutations of the Λi’s, the sequence {M(t) : t > 0} defines a point
process.

Note: For notational simplicity, h(M) will be used to denote the posterior
p(M |X).

It turns out that one can efficiently construct the desired ergodic Markov
chain by simulating a sampling scheme comprising a birth-and-death point pro-
cess step and a Data Augmentation step, both jointly converging to p(q,Λ,Ψ|X)
as the stationary distribution. The key idea behind the simulation of the birth-
and-death process is that each birth increases the number of points in the con-
figuration by one, while each death decreases this number by one. Furthermore,
both the birth and the death processes are constructed in such a way that they
are inverse operations to each other in the equilibrium state of the chain. One
way to construct such a process is to define births and deaths as follows:

• Define a birth density b(M; λ) according to which new points are added to
the current configuration of the point process.

• When the current configuration of the chain is M = {Λ1,Λ2, · · · }, each
point Λi dies independently of the others as a Poisson process with rate
ζi(M) = d(M;Λi), where d(M;λ) is the death density function, so that the
overall death rate is given by

ζ(M) =
∑

ζi(M).

The general practice consists of imposing suitable constraints on the birth and
death functions b and d to ensure that the process does not jump to an area with
zero density.

For simplicity, one can restrict the process to cases where births are assumed
to be occurring at an overall constant rate β(M) = β. Such a simplification has
the clear disadvantage that many different birth rates have to be tried empirically
before the “appropriate” one is found. These trials can however be avoided by
randomly perturbing the birth rate during the simulation.

With β(M) and ζ(M) defined, the following general results (stated without
proof) on Poisson processes will be used. These results are used to obtain the
distribution of the time to the next event in the simulation of the birth-and-death
process and the distribution of the next event.

Theorem 1. The birth and the death being independent Poisson processes,
the time to the next event (birth or death) is exponentially distributed with mean
1/(β(M) + ζ(M)).



302 Ernest Fokoué

Fact

Since the overall rate of the birth-and-death process is equal to β(M)+ ζ(M),
the next event will be a birth with probability β(M)/(β(M) + ζ(M)), while the
death of Λi will occur with probability ζi(M)/(β(M) + ζ(M)).

One is therefore in the presence of a continuous-time process since the time to
the next event is a continuous random variable, and, by virtue of the memoryless-
ness property of the exponential distribution, one has a continuous time Markov
process. In order to simulate such a continuous time process, a fixed unit of time,
ρ, is defined, and a discrete-time Markov chain {M(ρ),M(2ρ),M(3ρ), · · · } is con-
structed, and used as an approximation to the continuous-time chain {M(ρ+s) :
s > 0}. This simply means that, at each discrete iteration (t = 1, · · · , T ), the
birth-and-death process is run for a duration of ρ.

Preston (1976) stated sufficient conditions that the above densities b and d
must satisfy for the above birth-and-death process to define an ergodic Markov
chain with the desired equilibrium distribution. Preston (1976)’s work was later
extended and applied by Ripley (1977), and recently adapted to the analysis
of finite mixtures by Stephens (2000). The following theorem, which states the
sufficient conditions that b and d must satisfy, is from Preston (1976) and Ripley
(1977). A proof of its extended version as applied to finite mixtures can be found
in Stephens (2000).

Theorem 2. If the birth density b and the death density d satisfy

(q + 1)d(M ∪ {λ};λ)h(M ∪ {λ}) = β(M)b(M; λ)h(M) (4.6)

for all configurations M and all points λ, then the birth-and-death process defined
above has p(q,Λ,Ψ|X) as its stationary distribution.

Remark: In the above theorem, h(M∪{λ}) represents the posterior density
of a configuration with q+1 points. Intuitively, equation (4.6) means that, under
the equilibrium distribution p(·|X), transitions from M into M ∪ {λ} are exactly
matched by transitions from M ∪ {λ} into M. From equation (4.6), it is easy to
see that

d(M; λ) = b(M; λ)
[

β(M)
(q + 1)

] [
h(M)

h(M ∪ {λ})

]
, (4.7)

which is equivalent to

d(M;λ) = b(M; λ)
[
β(M)

q

] [
h(M\{λ})

h(M)

]
, (4.8)

where M\{λ} represents the current configuration M less the element λ. From
(4.8), it is easy to see that the appropriate death rate for element Λi (i = 1, · · · , q)
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is given by

ζi(M) =
[
β

q

] [
b(M;Λi)
p(Λi)

] [
L(M\Λi)

L(M)

] [
p(q − 1)

p(q)

]
(4.9)

where L(M) is the likelihood associated with the current configuration M. The
prior for q can be chosen to be either a uniform prior or a Poisson prior truncated
at the right end by a predetermined value qmax, ie

p(q|ν) ∝ νq

q!
exp(−ν) for q = 1, · · · , qmax (4.10)

If the birth density is chosen to be the prior density of a candidate element λ to
be added to the current configuration, then b(M; λ) = p(λ) and

ζi(M) =
[
β

q

] [
L(M\Λi)

L(M)

]
(4.11)

Based on all the above ingredients, a pseudocode of the birth-and-death pro-
cess is

Algorithm A: Birth-and-Death Process for Factor Analysis

Repeat

ζj :=
[
β

q

] [
L(M\λj)

L(M)

]
for j = 1, · · · , q

ζ :=
q∑

j=1

ζj

s := Exponential

(
1

β + ζ

)
t := t + s

birth := Bernoulli
(

β
β+ζ

)
If birth = 1 /* It is a birth */

λnew := b(M;λ)
M := M ∪ {λnew}
q := q + 1

Else /* It is a death */
πj = ζj/ζ for j = 1, · · · , q

out := Multinomial (π1, π2, · · · , πq)
M := M\{λout}
q := q − 1
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End;

Until (t ≥ ρ)

4.3 Maximum a posteriori estimate for q

The mode of p(q|X) provides the maximum a posteriori estimate for q, namely

qopt = arg max
q

p(q|X) (4.12)

Once the Markov chain {M(t) = {q(t),Λ(t)
1 ,Λ(t)

2 , · · · ,Λ(t)
i , · · · ,Λ(t)

q(t) ,Ψ(t)} : t =
1, · · · , T} has converged to the desired equilibrium distribution, the sequence
{q(t) : t = 1, · · · , T} is essentially a sequence of draws from the marginal dis-
tribution p(q|X). Inference for q can be based on an estimate of this marginal
posterior distribution obtained from the MCMC sample path as follows: Let Nm

be the number of time the birth and death process yielded m as the number of
factors after burn-in. Clearly,

Nm =
M∑

j=1

I(q(t) = m) (4.13)

where I(·) is the indicator function. Rigorously,

Pr [q = m|X] = lim
M→∞

Nm

M
≈ Nm

M
(4.14)

Using (4.12), (4.13) and (4.14), the maximum a posteriori estimate for q is ob-
tained by simply choosing the value of q having the highest frequency in the
sample path of the Markov chain.

q̂opt = arg max
m

Nm (4.15)

Since the sample path after burning is a realization from the true posterior p(q|X),
the estimate provided by this method is a more accurate estimate of the “true”
q. In this sense, this estimate may be seen as “better” than estimated obtained
through an approximate posterior as proposed by Press and Shigemasu (1998).

5. Numerical Results

This section presents numerical performance of the proposed method on three
problems. All the simulations are written in Matlab 6.5 Release 13 for Unix.
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β = (
√

5−1)/2 = 0.61803 (golden ratio) is used as the overall constant birth rate
throughout the computations.

5.1 Artificial dataset from Press and Shigemasu (1998)

The dimensionality of the input space here is p = 10, and the sample size is
n = 200. All the datasets are generated using ε ∼ N (0, 0.36 Ip) and

Λ> =

 .8 .8 .8 .8 0 0 0 0 0 0
0 0 0 0 .8 .8 .8 0 0 0
0 0 0 0 0 0 0 .8 .8 .8

 .

The number of factors is known to be q = 3, and the aim here is to compare the
performance of different methods on the task of estimating q.
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Figure 2: (Left) Screeplot (Center) Histogram of the number of factors when
q(0) = 1. (Right) Histogram of the number of factors when q(0) = 5.

Results from the screeplot method

The screeplot method is usually the quickest and easiest way to obtain a
rough ad-hoc estimate of the number of factors. For this problem, the elbow of
the screeplot (see figure 2-[left]) seems to be suggesting q = 4 as the “appropriate”
number of factors, which in this case is the wrong answer.
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Results from the stochastic simulation method

The burn-in here is To = 2500, and the final sample path length M = 1000.
Both initializations lead to roughly the same equilibrium distribution (see

figure 3-[center] and figure 2-[right]), and produce exactly the same maximum a
posteriori inference for q. This, and many other examples revealed the insensi-
tivity of the proposed method to initial conditions. The convergence is always
achieved whatever the initial values of q.

Results from the method used in Press and Shigemasu (1998)

The values of the log-likelihood obtained by Press and Shigemasu (1998) seem
too close for q = 3 and q = 4 as revealed by figure 3, which makes the evidence in
favor of q = 3 not as compellingly clear as the evidence provided by the histograms
from the birth-and-death process. This suggests that the birth-and-death process
is better in this setting.

2 2.2 2.4 2.6 2.8 3 3.2 3.4 3.6 3.8 4
−2020

−2000

−1980

−1960

−1940

−1920

−1900

−1880

−1860

−1840

Figure 3: Each line in the plot uses a different random dataset X to compute
the approximate value of log (P (Q = q|X)) (within an additive constant) for
q = 2, 3, 4.

5.2 Analysis of the wine data set

This dataset is available at the Machine Learning repository of the University
of California, Irvine Blake and Merz (1998). It is ranked as a moderately difficult
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dataset, and has been widely used to test classification methods and algorithms.
McLachlan and Peel (2000) used it in the mixture of factor analyzers chapter of
his book, and perform sequential likelihood ratio tests to determine the number
of factors underlying the p = 13 input space variables.

Results from the screeplot method

Unlike the relatively obvious position of the elbow seen earlier on the artificial
dataset, it is unclear in this wine dataset where the “right” position of the elbow
would be (see figure 4-left). In any case, it doesn’t seem to be anywhere near
the value q = 6 found by many principled methods used on this dataset. The
subjectivity of the position of the elbow on the screeplot clearly reveals one of
the main drawbacks of this ad hoc method.
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Figure 4: Screeplot and Histogram from stochastic simulation for the wine data

Results from the stochastic simulation method

The stochastic simulation method is applied here using To = 9500 burn-in
iterations. ν = 0.618 is used as the overall constant birth-rate, and M = 2500 is
the number of final MCMC samples retained. Figure (4-[right]) strongly suggests
that q = 6 would be the intrinsic dimensionality of the wine data. The result
obtained here by stochastic simulation is the same obtained by McLachlan and
Peel (2000) through the use of sequential likelihood ratio tests.

5.3 The job application dataset

There are 48 applicants for a certain job, and they have been scored on p = 15
variables regarding their acceptability. The observed variables are the following:
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(1) Form of letter application (2) Appearance (3) Academic ability
(4) Likeabiliy (5) Self-confidence (6) Lucidity
(7) Honesty (8) Salesmanship (9) Experience
(10) Drive (11) Ambition (12) Grasp
(13) Potential (14) Keenness to join (15) Suitability

The dataset can be downloaded from Daniel Rowe’s website.

http://www.biophysics.mcw.edu/BRI-people/Rowe/BFA.html

Both Press and Shigemasu (1989, 1997), and Rowe and Press (2001) have studied
this dataset.
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Figure 5: Job application dataset. (Left) Screeplot (Right) Histogram for the
number of factors.

Results from the screeplot method

The position of the elbow in the screeplot (see Figure 5-[Left]) is rather unclear
in this case, which makes room for very subjective estimations. This underlines
once again another weakness of this approach to the estimation of the number of
factors.

Results from the stochastic simulation method

The histogram of the number of factors (see Figure 5-[Right]) provides an
overwhelming evidence in favor of q = 4. This estimate is strongly backed by
the history behind the dataset. In fact, it would seem that this was a case
of confirmatory factor analysis whereby the questionnaire was constructed with
these four factors in view, so that the factor analysis actually only served to find
the factor loadings. Note: It would be interesting to see the performance of Press
and Shigemasu (1998)’s method on this dataset, especially considering the fact
that this dataset came from them.
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6. Conclusion and Discussion

This paper has presented a method to simultaneously extract a simple struc-
ture and also determine of the number of factors in orthogonal factor analysis.
The technique has the advantage of been straightforward, principled and very
easy to interpret. Besides, unlike many other methods before it, the estimates
derived do not rely on any form of approximation or ad-hoc scheme.

Although the method has been derived specifically for orthogonal factor anal-
ysis, extending it to oblique factor analysis is straightforward, and can therefore
be done with very little extra effort.

The computation required is very light, making the scheme useful for practical
applications.

It is anticipated that the present computational efficiency would be main-
tained for p ≤ 100, which is a reasonable input space dimensionality for many
practical factor analysis applications where interpretability and uniqueness are
of interest.

When it comes to deriving a point process formulation of the FA model, the
constrained structure defined in (3.2) poses a great difficulty due to the fact that it
is not rotation invariant. This constrained structure cannot be easily incorporated
in the stochastic scheme for determining q, since the scheme requires invariance
to axes permutation. Despite this drawback however, constraints of this type are
very good when q is known because of its ease of implementation and the fact it
allows a clear isolation of a unique solution.

On the other hand, the estimate of Λ obtained via the ARD prior approach
although constructively simple by virtue of its inherent sparseness, is not guar-
anteed to be unique. In fact, it may well happen that the prior induces a good
number of zeros in the final estimate of Λ. ARD is therefore good when one wants
to extract a unique simple structure and determine the intrinsic dimensionality
simultaneously.

Factor analysis is also heavily used in engineering and pattern recognition as
a dimensionality reduction tool. Although an exact number of factors is not as
crucial there as it is in confirmatory and exploratory factor analysis, contexts like
mixtures of factor analyzers for density estimation would make great use of good
intrinsic dimensionality determination as a way to control overfitting.

In this paper, the time interval (0, T ] of simulation of the continuous-time
birth-and-death point process was divided into intervals of equal length ρ. Al-
though, this way of simulating continuous-time processes has been widely used,
it turns that the interval (0, T ] need not be discretized. The details of such a
continuous time simulation along with its advantages are described in a future
paper.
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