An exponentiated Weibull-geometric distribution is defined and studied. A new count data regression model, based on the exponentiated Weibull-geometric distribution, is also defined. The regression model can be applied to fit an underdispersed or an over-dispersed count data. The exponentiated Weibull-geometric regression model is fitted to two numerical data sets. The new model provided a better fit than the fit from its competitors.
Abstract: In this study, we compared various block bootstrap methods in terms of parameter estimation, biases and mean squared errors (MSE) of the bootstrap estimators. Comparison is based on four real-world examples and an extensive simulation study with various sample sizes, parameters and block lengths. Our results reveal that ordered and sufficient ordered non-overlapping block bootstrap methods proposed by Beyaztas et al. (2016) provide better results in terms of parameter estimation and its MSE compared to conventional methods. Also, sufficient non-overlapping block bootstrap method and its ordered version have the smallest MSE for the sample mean among the others.
Abstract:A new generalized two-parameter Lindley distribution which offers more flexibility in modeling lifetime data is proposed and some of its mathematical properties such as the density function, cumulative distribution function, survival function, hazard rate function, mean residual life function, moment generating function, quantile function, moments, Renyi entropy and stochastic ordering are obtained. The maximum likelihood estimation method was used in estimating the parameters of the proposed distribution and a simulation study was carried out to examine the performance and accuracy of the maximum likelihood estimators of the parameters. Finally, an application of the proposed distribution to a real lifetime data set is presented and its fit was compared with the fit attained by some existing lifetime distributions.
In this work, we introduce a new distribution for modeling the extreme values. Some important mathematical properties of the new model are derived. We assess the performance of the maximum likelihood method in terms of biases and mean squared errors by means of a simulation study. The new model is better than some other important competitive models in modeling the repair times data and the breaking stress data.
A new distribution called the log generalized Lindley-Weibull (LGLW) distribution for modeling lifetime data is proposed. This model further generalizes the Lindley distribution and allows for hazard rate functions that are monotonically decreasing, monotonically increasing and bathtub shaped. A comprehensive investigation and account of the mathematical and statistical properties including moments, moment generating function, simulation issues and entropy are presented. Estimates of model parameters via the method of maximum likelihood are given. Real data examples are presented to illustrate the usefulness and applicability of this new distribution.