The generalized gamma model has been used in several applied areas such as engineering, economics and survival analysis. We provide an extension of this model called the transmuted generalized gamma distribution, which includes as special cases some lifetime distributions. The proposed density function can be represented as a mixture of generalized gamma densities. Some mathematical properties of the new model such as the moments, generating function, mean deviations and Bonferroni and Lorenz curves are provided. We estimate the model parameters using maximum likelihood. We prove that the proposed distribution can be a competitive model in lifetime applications by means of a real data set.
In this paper, we introduce some new families of generalized Pareto distributions using the T-R{Y} framework. These families of distributions are named T-Pareto{Y} families, and they arise from the quantile functions of exponential, log-logistic, logistic, extreme value, Cauchy and Weibull distributions. The shapes of these T-Pareto families can be unimodal or bimodal, skewed to the left or skewed to the right with heavy tail. Some general properties of the T-Pareto{Y} family are investigated and these include the moments, modes, mean deviations from the mean and from the median, and Shannon entropy. Several new generalized Pareto distributions are also discussed. Four real data sets from engineering, biomedical and social science are analyzed to demonstrate the flexibility and usefulness of the T-Pareto{Y} families of distributions.
Abstract: We introduce a new class of continuous distributions called the Ku maraswamy transmuted-G family which extends the transmuted class defined by Shaw and Buckley (2007). Some special models of the new family are provided. Some of its mathematical properties including explicit expressions for the ordinary and incomplete moments, generating function, Rényi and Shannon entropies, order statistics and probability weighted moments are derived. The maximum likelihood is used for estimating the model parameters. The flexibility of the generated family is illustrated by means of two applications to real data sets.
The so-called Kumaraswamy distribution is a special probability distribution developed to model doubled bounded random processes for which the mode do not necessarily have to be within the bounds. In this article, a generalization of the Kumaraswamy distribution called the T-Kumaraswamy family is defined using the T-R {Y} family of distributions framework. The resulting T-Kumaraswamy family is obtained using the quantile functions of some standardized distributions. Some general mathematical properties of the new family are studied. Five new generalized Kumaraswamy distributions are proposed using the T-Kumaraswamy method. Real data sets are further used to test the applicability of the new family.
Abstract: The generalized gamma model has been used in several applied areas such as engineering, economics and survival analysis. We provide an extension of this model called the transmuted generalized gamma distribution, which includes as special cases some lifetime distributions. The proposed density function can be represented as a mixture of generalized gamma densities. Some mathematical properties of the new model such as the moments, generating function, mean deviations and Bonferroni and Lorenz curves are provided. We estimate the model parameters using maximum likelihood. We prove that the proposed distribution can be a competitive model in lifetime applications by means of a real data set.