In this paper a new two-parameter distribution is proposed. This new model provides more flexibility to modeling data with increasing and bathtub hazard rate function. Several statistical and reliability properties of the proposed model are also presented in this paper, such as moments, moment generating function, order statistics and stress-strength reliability. The maximum likelihood estimators for the parameters are discussed as well as a bias corrective approach based on bootstrap techniques. A numerical simulation is carried out to examine the bias and the mean square error of the proposed estimators. Finally, an application using a real data set is presented to illustrate our model.
Analyzing time to event data arises in a number of fields such as Biology and Engineering. A common feature of this data is that, the exact failure time for all units may not be observable. Accordingly, several types of censoring were presented. Progressive censoring allows units to be randomly removed before the terminal point of the experiment. Marshall-Olkin bivariate lifetime distribution was first introduced in 1967 using the exponential distribution. Recently, bivariate Marshall-Olkin Kumaraswamy lifetime distribution was derived. This paper derives the likelihood function under progressive type-I censoring for the bivariate Marshall-Olkin family in general and applies it on the bivariate Kumaraswamy lifetime distribution. Maximum likelihood estimators of model parameters were derived. Simulation study and a real data set are presented to illustrate the proposed procedure. Absolute bias, mean square error, asymptotic confidence intervals, confidence width and coverage probability are obtained. Simulation results indicate that the mean square error is smaller and confidence width is narrower and more precise when number of removals gets smaller. Also, increasing the terminal point of the experiment results in reducing the mean square error and confidence width.
Abstract: We introduce and study a new four-parameter lifetime model named the exponentiated generalized extended exponential distribution. The proposed model has the advantage of including as special cases the exponential and exponentiated exponential distributions, among others, and its hazard function can take the classic shapes: bathtub, inverted bathtub, increasing, decreasing and constant, among others. We derive some mathematical properties of the new model such as a representation for the density function as a double mixture of Erlang densities, explicit expressions for the quantile function, ordinary and incomplete moments, mean deviations, Bonferroni and Lorenz curves, generating function, R´enyi entropy, density of order statistics and reliability. We use the maximum likelihood method to estimate the model parameters. Two applications to real data illustrate the flexibility of the proposed model.
In this paper, we proposed another extension of inverse Lindley distribution, called extended inverse Lindley and studied its fundamental properties such as moments, inverse moments, mean deviation, stochastic ordering and entropy. The flexibility of the proposed distribution is shown by studying monotonicity properties of density and hazard functions. It is shown that the distribution belongs to the family of upside-down bathtub shaped distributions. Maximum likelihood estimators along with asymptotic confidence intervals are constructed for estimating the unknown parameters. An algorithm is presented for random number generation form the distribution. The property of consistency of MLEs has been verified on the basis of simulated samples. The applicability of the extended inverse Lindley distribution is illustrated by means of real data analysis.
Abstract: : In this paper, we discussed classical and Bayes estimation procedures for estimating the unknown parameters as well as the reliability and hazard functions of the flexible Weibull distribution when observed data are collected under progressively Type-II censoring scheme. The performances of the maximum likelihood and Bayes estimators are compared in terms of their mean squared errors through the simulation study. For the computation of Bayes estimates, we proposed the use of Lindley’s approximation and Markov Chain Monte Carlo (MCMC) techniques since the posteriors of the parameters are not analytically tractable. Further, we also derived the one and two sample posterior predictive densities of future samples and obtained the predictive bounds for future observations using MCMC techniques. To illustrate the discussed procedures, a set of real data is analysed.