In this paper a new two-parameter distribution is proposed. This new model provides more flexibility to modeling data with increasing and bathtub hazard rate function. Several statistical and reliability properties of the proposed model are also presented in this paper, such as moments, moment generating function, order statistics and stress-strength reliability. The maximum likelihood estimators for the parameters are discussed as well as a bias corrective approach based on bootstrap techniques. A numerical simulation is carried out to examine the bias and the mean square error of the proposed estimators. Finally, an application using a real data set is presented to illustrate our model.
Analyzing time to event data arises in a number of fields such as Biology and Engineering. A common feature of this data is that, the exact failure time for all units may not be observable. Accordingly, several types of censoring were presented. Progressive censoring allows units to be randomly removed before the terminal point of the experiment. Marshall-Olkin bivariate lifetime distribution was first introduced in 1967 using the exponential distribution. Recently, bivariate Marshall-Olkin Kumaraswamy lifetime distribution was derived. This paper derives the likelihood function under progressive type-I censoring for the bivariate Marshall-Olkin family in general and applies it on the bivariate Kumaraswamy lifetime distribution. Maximum likelihood estimators of model parameters were derived. Simulation study and a real data set are presented to illustrate the proposed procedure. Absolute bias, mean square error, asymptotic confidence intervals, confidence width and coverage probability are obtained. Simulation results indicate that the mean square error is smaller and confidence width is narrower and more precise when number of removals gets smaller. Also, increasing the terminal point of the experiment results in reducing the mean square error and confidence width.
Abstract: In the area of survival analysis the most popular regression model is the Cox proportional hazards (PH) model. Unfortunately, in practice not all data sets satisfy the PH condition and thus the PH model cannot be used. To overcome the problem, the proportional odds (PO) model ( Pettitt 1982 and Bennett 1983a) and the generalized proportional odds (GPO) model ( Dabrowska and Doksum, 1988) were proposed, which can be considered in some sense generalizations of the PH model. However, there are examples indicating that the use of the PO or GPO model is not appropriate. As a consequence, a more general model must be considered. In this paper, a new model, called the proportional generalized odds (PGO) model, is introduced, which covers PO and GPO models as special cases. Estimation of the regression parameters as well as the underlying survival function of the GPO model is discussed. An application of the model to a data set is presented.
Abstract: The generalized gamma model has been used in several applied areas such as engineering, economics and survival analysis. We provide an extension of this model called the transmuted generalized gamma distribution, which includes as special cases some lifetime distributions. The proposed density function can be represented as a mixture of generalized gamma densities. Some mathematical properties of the new model such as the moments, generating function, mean deviations and Bonferroni and Lorenz curves are provided. We estimate the model parameters using maximum likelihood. We prove that the proposed distribution can be a competitive model in lifetime applications by means of a real data set.
Abstract: Shared frailty models are often used to model heterogeneity in survival analysis. The most common shared frailty model is a model in which hazard function is a product of random factor (frailty) and baseline hazard function which is common to all individuals. There are certain as sumptions about the baseline distribution and distribution of frailty. Mostly assumption of gamma distribution is considered for frailty distribution. To compare the results with gamma frailty model, we introduce three shared frailty models with generalized exponential as baseline distribution. The other three shared frailty models are inverse Gaussian shared frailty model, compound Poisson shared frailty model and compound negative binomial shared frailty model. We fit these models to a real life bivariate survival data set of McGilchrist and Aisbett (1991) related to kidney infection using Markov Chain Monte Carlo (MCMC) technique. Model comparison is made using Bayesian model selection criteria and a better model is suggested for the data.