Abstract: In this study, we compared various block bootstrap methods in terms of parameter estimation, biases and mean squared errors (MSE) of the bootstrap estimators. Comparison is based on four real-world examples and an extensive simulation study with various sample sizes, parameters and block lengths. Our results reveal that ordered and sufficient ordered non-overlapping block bootstrap methods proposed by Beyaztas et al. (2016) provide better results in terms of parameter estimation and its MSE compared to conventional methods. Also, sufficient non-overlapping block bootstrap method and its ordered version have the smallest MSE for the sample mean among the others.
The Lindley distribution has been generalized by many authors in recent years. However, all of the known generalizations so far have restricted tail behaviors. Here, we introduce the most flexible generalization of the Lindley distribution with its tails controlled by two independent parameters. Various mathematical properties of the generalization are derived. Maximum likelihood estimators of its parameters are derived. Fisher’s information matrix and asymptotic confidence intervals for the parameters are given. Finally, a real data application shows that the proposed generalization performs better than all known ones
In this work, we introduce a new distribution for modeling the extreme values. Some important mathematical properties of the new model are derived. We assess the performance of the maximum likelihood method in terms of biases and mean squared errors by means of a simulation study. The new model is better than some other important competitive models in modeling the repair times data and the breaking stress data.
Abstract: Friedman’s test is a rank-based procedure that can be used to test for differences among t treatment distributions in a randomized complete block design. It is well-known that the test has reasonably good power under location-shift alternatives to the null hypothesis of no difference in the t treatment distributions. However the power of Friedman’s test when the alternative hypothesis consists of a non-location difference in treatment distributions can be poor. We develop the properties of an alternative rank-based test that has greater power than Friedman’s test in a variety of such circumstances. The test is based on the joint distribution of the t! possible permutations of the treatment ranks within a block (assuming no ties). We show when our proposed test will have greater power than Friedman’s test, and provide results from extensive numerical work comparing the power of the two tests under various configurations for the underlying treatment distributions.
Families of distributions are commonly used to model insurance claims data that require flexible distributional forms in a satisfactory manner, but the specification problem to assess the goodness-of-fit of the hypothesized model can sometimes be a challenge due to the complexity of the likelihood function of the family of distributions involved. The previous work shows that these specification problems can be attacked by means of semi-parametric tests based on generalized method of moment (GMM) estimators. While the approach can be directly applied to both discrete and continuous families of distributions, the paper focuses on developing a testing strategy within a framework of discrete families of distributions. Both the local power analysis and the approximate slope method demonstrate the excellent performance of these tests. The finite-sample performance of the tests, based on both asymptotic and bootstrap critical values, are also discussed and are compared with established methods that require the complete specification of likelihood functions.