Abstract: In this study, we compared various block bootstrap methods in terms of parameter estimation, biases and mean squared errors (MSE) of the bootstrap estimators. Comparison is based on four real-world examples and an extensive simulation study with various sample sizes, parameters and block lengths. Our results reveal that ordered and sufficient ordered non-overlapping block bootstrap methods proposed by Beyaztas et al. (2016) provide better results in terms of parameter estimation and its MSE compared to conventional methods. Also, sufficient non-overlapping block bootstrap method and its ordered version have the smallest MSE for the sample mean among the others.
The Lindley distribution has been generalized by many authors in recent years. However, all of the known generalizations so far have restricted tail behaviors. Here, we introduce the most flexible generalization of the Lindley distribution with its tails controlled by two independent parameters. Various mathematical properties of the generalization are derived. Maximum likelihood estimators of its parameters are derived. Fisher’s information matrix and asymptotic confidence intervals for the parameters are given. Finally, a real data application shows that the proposed generalization performs better than all known ones
In this paper, we introduce a new four-parameter distribution called the transmuted Weibull power function (TWPF) distribution which e5xtends the transmuted family proposed by Shaw and Buckley [1]. The hazard rate function of the TWPF distribution can be constant, increasing, decreasing, unimodal, upside down bathtub shaped or bathtub shape. Some mathematical properties are derived including quantile functions, expansion of density function, moments, moment generating function, residual life function, reversed residual life function, mean deviation, inequality measures. The estimation of the model parameters is carried out using the maximum likelihood method. The importance and flexibility of the proposed model are proved empirically using real data sets.
In this paper, a new four parameter zero truncated Poisson Frechet distribution is defined and studied. Various structural mathematical properties of the proposed model including ordinary moments, incomplete moments, generating functions, order statistics, residual and reversed residual life functions are investigated. The maximum likelihood method is used to estimate the model parameters. We assess the performance of the maximum likelihood method by means of a numerical simulation study. The new distribution is applied for modeling two real data sets to illustrate empirically its flexibility.
Abstract: Chen, Bunce and Jiang [In: Proceedings of the International Con ference on Computational Intelligence and Software Engineering, pp. 1-4] claim to have proposed a new extreme value distribution. But the formulas given for the distribution do not form a valid probability distribution. Here, we correct their formulas to form a valid probability distribution. For this valid distribution, we provide a comprehensive treatment of mathematical properties, estimate parameters by the method of maximum likelihood and provide the observed information matrix. The flexibility of the distribution is illustrated using a real data set.