Pub. online:7 Aug 2024Type:Data Science In ActionOpen Access
Journal:Journal of Data Science
Volume 22, Issue 3 (2024): Special issue: The Government Advances in Statistical Programming (GASP) 2023 conference, pp. 409–422
Abstract
The North American Product Classification System (NAPCS) was first introduced in the 2017 Economic Census and provides greater detail on the range of products and services offered by businesses than what was previously available with just an industry code. In the 2022 Economic Census, NAPCS consisted of 7,234 codes and respondents often found that they were unable to identify correct NAPCS codes for their business, leaving instead written descriptions of their products and services. Over one million of these needed to be reviewed by Census analysts in the 2017 Economic Census. The Smart Instrument NAPCS Classification Tool (SINCT) offers respondents a low latency search engine to find appropriate NAPCS codes based on a written description of their products and services. SINCT uses a neural network document embedding model (doc2vec) to embed respondent searches in a numerical space and then identifies NAPCS codes that are close to the search text. This paper shows one way in which machine learning can improve the survey respondent experience and reduce the amount of expensive manual processing that is necessary after data collection. We also show how relatively simple tools can achieve an estimated 72% top-ten accuracy with thousands of possible classes, limited training data, and strict latency requirements.
The National Association of Stock Car Auto Racing (NASCAR) is ranked among the top ten most popular sports in the United States. NASCAR events are characterized by on-track racing punctuated by pit stops since cars must refuel, replace tires, and modify their setup throughout a race. A well-executed pit stop can allow drivers to gain multiple seconds on their opponents. Strategies around when to pit and what to perform during a pit stop are under constant evaluation. One currently unexplored area is publically available communication between each driver and their pit crew during the race. Due to the many hours of audio, manual analysis of even one driver’s communications is prohibitive. We propose a fully automated approach to analyze driver–pit crew communication. Our work was conducted in collaboration with NASCAR domain experts. Audio communication is converted to text and summarized using cluster-based Latent Dirichlet Analysis to provide an overview of a driver’s race performance. The transcript is then analyzed to extract important events related to pit stops and driving balance: understeer (pushing) or oversteer (over-rotating). Named entity recognition (NER) and relationship extraction provide context to each event. A combination of the race summary, events, and real-time race data provided by NASCAR are presented using Sankey visualizations. Statistical analysis and evaluation by our domain expert collaborators confirmed we can accurately identify important race events and driver interactions, presented in a novel way to provide useful, important, and efficient summaries and event highlights for race preparation and in-race decision-making.
Law and legal studies has been an exciting new field for data science applications whereas the technological advancement also has profound implications for legal practice. For example, the legal industry has accumulated a rich body of high quality texts, images and other digitised formats, which are ready to be further processed and analysed by data scientists. On the other hand, the increasing popularity of data science has been a genuine challenge to legal practitioners, regulators and even general public and has motivated a long-lasting debate in the academia focusing on issues such as privacy protection and algorithmic discrimination. This paper collects 1236 journal articles involving both law and data science from the platform Web of Science to understand the patterns and trends of this interdisciplinary research field in terms of English journal publications. We find a clear trend of increasing publication volume over time and a strong presence of high-impact law and political science journals. We then use the Latent Dirichlet Allocation (LDA) as a topic modelling method to classify the abstracts into four topics based on the coherence measure. The four topics identified confirm that both challenges and opportunities have been investigated in this interdisciplinary field and help offer directions for future research.
Pub. online:19 Apr 2022Type:Statistical Data ScienceOpen Access
Journal:Journal of Data Science
Volume 21, Issue 3 (2023): Special Issue: Advances in Network Data Science, pp. 470–489
Abstract
Networks are ubiquitous in today’s world. Community structure is a well-known feature of many empirical networks, and a lot of statistical methods have been developed for community detection. In this paper, we consider the problem of community extraction in text networks, which is greatly relevant in medical errors and patient safety databases. We adapt a well-known community extraction method to develop a scalable algorithm for extracting groups of similar documents in large text databases. The application of our method on a real-world patient safety report system demonstrates that the groups generated from community extraction are much more accurate than manual tagging by frontline workers.
Pub. online:22 Feb 2021Type:Data Science In Action
Journal:Journal of Data Science
Volume 19, Issue 2 (2021): Special issue: Continued Data Science Contributions to COVID-19 Pandemic, pp. 334–347
Abstract
Coronavirus and the COVID-19 pandemic have substantially altered the ways in which people learn, interact, and discover information. In the absence of everyday in-person interaction, how do people self-educate while living in isolation during such times? More specifically, do communities emerge in Google search trends related to coronavirus? Using a suite of network and community detection algorithms, we scrape and mine all Google search trends in America related to an initial search for “coronavirus,” starting with the first Google search on the term (January 16, 2020) to recently (August 11, 2020). Results indicate a near-constant shift in the structure of how people educate themselves on coronavirus. Queries in the earliest days focusing on “Wuhan” and “China”, then shift to “stimulus checks” at the height of the virus in the U.S., and finally shift to queries related to local surges of new cases in later days. A few communities emerge surrounding terms more overtly related to coronavirus (e.g., “cases”, “symptoms”, etc.). Yet, given the shift in related Google queries and the broader information environment, clear community structure for the full search space does not emerge.