Multi-Dimensional Clustering Based on Restricted Distance-Dependent Mixture Dirichlet Process for Diffusion Tensor Imaging
Volume 22, Issue 4 (2024), pp. 537–557
Pub. online: 2 April 2024
Type: Statistical Data Science
Open Access
Received
22 September 2023
22 September 2023
Accepted
12 March 2024
12 March 2024
Published
2 April 2024
2 April 2024
Abstract
Brain imaging research poses challenges due to the intricate structure of the brain and the absence of clearly discernible features in the images. In this study, we propose a technique for analyzing brain image data identifying crucial regions relevant to patients’ conditions, specifically focusing on Diffusion Tensor Imaging data. Our method utilizes the Bayesian Dirichlet process prior incorporating generalized linear models, that enhances clustering performance while it benefits from the flexibility of accommodating varying numbers of clusters. Our approach improves the performance of identifying potential classes utilizing locational information by considering the proximity between locations as clustering constraints. We apply our technique to a dataset from Transforming Research and Clinical Knowledge in Traumatic Brain Injury study, aiming to identify important regions in the brain’s gray matter, white matter, and overall brain tissue that differentiate between young and old age groups. Additionally, we explore a link between our discoveries and the existing outcomes in the field of brain network research.
Supplementary material
Supplementary MaterialSupplementary Materials include a MCMC algorithm for RDMDP method, a simulation study for 100 replications, explanation of the connection between identified brain clusters and the region of interest, and the statement regarding R code for the RDMDP method.
References
Albert JH, Chib S (1993). Bayesian analysis of binary and polychotomous response data. Journal of the American Statistical Association, 88(422): 669–679. https://doi.org/10.1080/01621459.1993.10476321
Baldassano C, Beck DM, Fei-Fei L (2015). Parcellating connectivity in spatial maps. PeerJ, 3: e784. https://doi.org/10.7717/peerj.784
Bernard JA, Seidler RD (2014). Moving forward: Age effects on the cerebellum underlie cognitive and motor declines. Neuroscience and Biobehavioral Reviews, 42: 193–207. https://doi.org/10.1016/j.neubiorev.2014.02.011
Blei DM, Griffiths TL, Jordan MI (2007). The nested Chinese restaurant process and hierarchical topic models. Journal of the ACM, 57(2): 1–30. https://doi.org/10.1145/1667053.1667056
Creswell R, Robinson M, Gavaghan D, Parag KV, Lei CL, Lambert B (2023). A Bayesian nonparametric method for detecting rapid changes in disease transmission. Journal of Theoretical Biology, 558: 111351. https://doi.org/10.1016/j.jtbi.2022.111351
Dahl DB (2009). Modal clustering in a class of product partition models. Bayesian Analysis, 4(2): 243–264. https://doi.org/10.1214/09-BA409
Duan JA, Guindani M, Gelfand AE (2007). Generalized spatial Dirichlet process models. Biometrika, 94(4): 809–825. https://doi.org/10.1093/biomet/asm071
Elliott ML, Belsky DW, Knodt AR, Ireland D, Melzer TR, Poulton R, et al. (2021). Brain-age in midlife is associated with accelerated biological aging and cognitive decline in a longitudinal birth cohort. Molecular Psychiatry, 26(8): 3829–3838. https://doi.org/10.1038/s41380-019-0626-7
ElNakieb Y, Ali MT, Elnakib A, Shalaby A, Soliman A, Mahmoud A, et al. (2021). The role of diffusion tensor MR imaging (DTI) of the brain in diagnosing autism spectrum disorder: Promising results. Sensors, 21(24): 8171. https://doi.org/10.3390/s21248171
Escobar MD, West M (1995). Bayesian density estimation and inference using mixtures. Journal of the American Statistical Association, 90(430): 577–588. https://doi.org/10.1080/01621459.1995.10476550
Frossyniotis D, Likas A, Stafylopatis A (2004). A clustering method based on boosting. Pattern Recognition Letters, 25(6): 641–654. https://doi.org/10.1016/j.patrec.2003.12.018
Griffin JE, Steel MJ (2006). Order-based dependent Dirichlet processes. Journal of the American Statistical Association, 101(473): 179–194. https://doi.org/10.1198/016214505000000727
Jbabdi S, Johansen-Berg H (2011). Tractography: Where do we go from here? Brain Connectivity, 1(3): 169–183. https://doi.org/10.1089/brain.2011.0033
Jones DK, Cercignani M (2010). Twenty-five pitfalls in the analysis of diffusion MRI data. NMR in Biomedicine, 23(7): 803–820. https://doi.org/10.1002/nbm.1543
Lan Z, Reich BJ, Bandyopadhyay D (2021). A spatial Bayesian semiparametric mixture model for positive definite matrices with applications in diffusion tensor imaging. Canadian Journal of Statistics, 49(1): 129–149. https://doi.org/10.1002/cjs.11601
Leritz EC, Shepel J, Williams VJ, Lipsitz LA, McGlinchey RE, Milberg WP, et al. (2014). Associations between T1 white matter lesion volume and regional white matter microstructure in aging. Human Brain Mapping, 35(3): 1085–1100. https://doi.org/10.1002/hbm.22236
Lu J, Li M, Dunson DB (2018). Reducing over-clustering via the powered chinese restaurant process. ArXiv preprint: https://arxiv.org/abs/1802.05392
Masoero L, Schraiber J, Broderick T (2021). Bayesian nonparametric strategies for power maximization in rare variants association studies. ArXiv preprint: https://arxiv.org/abs/2112.02032
Medvedovic M, Sivaganesan S (2002). Bayesian infinite mixture model based clustering of gene expression profiles. Bioinformatics, 18(9): 1194–1206. https://doi.org/10.1093/bioinformatics/18.9.1194
Medvedovic M, Yeung KY, Bumgarner RE (2004). Bayesian mixture model based clustering of replicated microarray data. Bioinformatics, 20(8): 1222–1232. https://doi.org/10.1093/bioinformatics/bth068
Meilă M (2007). Comparing clusterings—an information based distance. Journal of Multivariate Analysis, 98(5): 873–895. https://doi.org/10.1016/j.jmva.2006.11.013
Neal RM (2000). Markov chain sampling methods for Dirichlet process mixture models. Journal of Computational and Graphical Statistics, 9(2): 249–265. https://doi.org/10.1080/10618600.2000.10474879
Oganisian A (2019). Chirp: Chinese restaurant process mixtures for regression and clustering. Journal of Open Source Software, 4(35): 1287. https://doi.org/10.21105/joss.01287
Oganisian A, Mitra N, Roy JA (2021). A Bayesian nonparametric model for zero-inflated outcomes: Prediction, clustering, and causal estimation. Biometrics, 77(1): 125–135. https://doi.org/10.1111/biom.13244
Oganisian A, Roy JA (2021). A practical introduction to Bayesian estimation of causal effects: Parametric and nonparametric approaches. Statistics in Medicine, 40(2): 518–551. https://doi.org/10.1002/sim.8761
Parekh MB, Gurjarpadhye AA, Manoukian MA, Dubnika A, Rajadas J, Inayathullah M (2015). Recent developments in diffusion tensor imaging of brain. Radiology Open Journal, 1(1): 1. https://doi.org/10.17140/ROJ-1-101
Park DC, Bischof GN (2022). The aging mind: Neuroplasticity in response to cognitive training. Dialogues in Clinical Neuroscience, 15(1): 109–119. https://doi.org/10.31887/DCNS.2013.15.1/dpark
Pitman J (1995). Exchangeable and partially exchangeable random partitions. Probability Theory and Related Fields, 102(2): 145–158. https://doi.org/10.1007/BF01213386
Rasmussen C, De la Cruz BJ, Ghahramani Z, Wild DL (2008). Modeling and visualizing uncertainty in gene expression clusters using Dirichlet process mixtures. IEEE/ACM Transactions on Computational Biology and Bioinformatics, 6(4): 615–628. https://doi.org/10.1109/TCBB.2007.70269
Raykov YP, Boukouvalas A, Little MA (2016). Simple approximate map inference for Dirichlet processes mixtures. Electronic Journal of Statistics, 10(2): 3548–3578. https://doi.org/10.1214/16-EJS1196
Rodriguez CE, Walker SG (2014). Label switching in Bayesian mixture models: Deterministic relabeling strategies. Journal of Computational and Graphical Statistics, 23(1): 25–45. https://doi.org/10.1080/10618600.2012.735624
Roy J, Lum KJ, Zeldow B, Dworkin JD, Re III VL, Daniels MJ (2018). Bayesian nonparametric generative models for causal inference with missing at random covariates. Biometrics, 74(4): 1193–1202. https://doi.org/10.1111/biom.12875
Saatman KE, Duhaime AC, Bullock R, Maas AI, Valadka A, Manley GT (2008). Classification of traumatic brain injury for targeted therapies. Journal of Neurotrauma, 25(7): 719–738. https://doi.org/10.1089/neu.2008.0586
Sadiq MU, Langella S, Giovanello KS, Mucha PJ, Dayan E (2021). Accrual of functional redundancy along the lifespan and its effects on cognition. NeuroImage, 229: 117737. https://doi.org/10.1016/j.neuroimage.2021.117737
Schilling KG, Daducci A, Maier-Hein K, Poupon C, Houde JC, Nath V, et al. (2019). Challenges in diffusion MRI tractography – lessons learned from international benchmark competitions. Magnetic Resonance Imaging, 57: 194–209. https://doi.org/10.1016/j.mri.2018.11.014
Stern Y, Barnes CA, Grady C, Jones RN, Raz N (2019). Brain reserve, cognitive reserve, compensation, and maintenance: Operationalization, validity, and mechanisms of cognitive resilience. Neurobiology of Aging, 83: 124–129. https://doi.org/10.1016/j.neurobiolaging.2019.03.022
Teh J, Teh YW, Jordan MI, Beal MJ, Blei DM (2006). Hierarchical Dirichlet processes. Journal of the American Statistical Association, 101(476): 1566–1581. https://doi.org/10.1198/016214506000000302
Wade S, Ghahramani Z (2018). Bayesian cluster analysis: Point estimation and credible balls (with discussion). Bayesian Analysis, 13(2): 559–626. https://doi.org/10.1214/17-BA1073
Whitcher B, Schmid VJ, Thornton A (2011). Working with the DICOM and NIfTI data standards in R. Journal of Statistical Software, 44(6): 1–28. https://doi.org/10.18637/jss.v044.i06
Xian MTS, Wade S (2022). Bayesian nonparametric scalar-on-image regression via potts-gibbs random partition models. ArXiv preprint: https://arxiv.org/abs/2206.11051