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Supplementary Material 1

1 RDMDP Clustering

Here, we explain a MCMC algorithm for RDMDP clustering below. In the following discussion,
we follow the definitions of the parameters and distributions in the main text.

Algorithm 1: RDMDP Clustering

Data: D; = (z;,y;),i = 1,2, ...,n for a set of covariates, x;, and a binary response y;. T'
indicates the number of MCMC sampling.

Result: Final cluster assignment ¢* = (g7, g5, ..., g;).

1 Initialize g@z to K initial clusters with unique labels;

2 Initialize {9 =1 and () = (3O), ;) ()

3 fort<+ 1to T do

4 Update ¥ via Metropolis-Hastings with the acceptance rate H in Equation (5);
5 Update Cluster-specific Parameters;
6 for k € K1 do
T || B~ w81V X o m(B) TIE (@ (X B} {1 = B(XT 50}
m, 27}51 X5
o T
s iy, ~ o8 D) x N | ——h—, [ | 1= 1 p:
vo ¢l(lt;1) v0 d,l(]ifl)
o || ol ~p(0l8 D) o 16 (g0 + 5 4 5 (X — ) o) 1 =1,
10 end
11 Update cluster memberships g1.,;
12 for i < 1 ton do
13 Update cluster membership with a probability %P* (Dilégt_)l) Q(g(t)7 A) for
ke K® or to the newly proposed cluster with a probability
e (Di|0(()t)) Q(g™, A) where Q is an adjacency matrix;
14 end
15 end

2 Simulation studies

We conducted an additional simulation study to augment our comparative analyses. For every
simulation, ground truths were created according to the specifications outlined in Section 3.1
of the main text, under settings 1 and 2. In each scenario, 100 simulated datasets were gener-
ated. For setting 1, we have random cluster membership (cl, ¢2, and ¢3) generated by 'monte’
function in R package 'fungible’ (Waller et al., 2024) with n values of (0.9, 0.7, 0.7), a set of
random covariates and its probit response (vi, ve, v3, and z), and ground truth coefficients (by,
ba, b3) where by and by are fixed and bg ~ Normal(3,1) for each covariate. The value 7 close
to 1 indicates higher separations between clusters. For generating z with the probit model, we
let (b1, be, and b3) to be (0.8, -1.4, bs), (2.5, 1.2, b3) and (-1.3, 0.8, b3) for cl, ¢2 and 3. We
refer more details to the provided code online. For setting 2, we have fixed cluster membership,
a set of random covariates and its probit response, and fixed ground truth coefficients. We gen-
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erate by from N(1,2), by from N(5,2), b3 from N(0, 1.5) for cluster cl, by from N(5,2), be from
N(1,2), b from N(0,1.5) for cluster ¢2, and b; from N(0,2), be from N(0,2), b3 from N(5,1.5)
for cluster ¢3. Illustrations of the generated ground truth patterns and their corresponding clus-
tering results can be found in Figures S1 and S2. It is important to note that these figures
offer only a snapshot of the simulation, providing a glimpse of the shapes of clusters and their
corresponding assignments. Performance indices are summarized (average) in Table S1. In line
with our exploration in Section 3.3, metrics like silhouette, entropy, adjusted rand index (ARI),
and Calinski-Harabasz index (CHI) do not consistently indicate the superiority of any particular
method. Nevertheless, accuracy (rate of correct predictions of clusters) consistently demonstrates
the favorable performance of RDMDP methods overall.
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Figure S1: A simulation example from Setting 1.
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Original K-means Gaussian Mixture
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Figure S2: A simulation example from Setting 2.

3 Connection between cluster assignment and the regions of in-
terest

Table S2 presents a depiction of the relationships between the cluster assignments in Figure 3
and the corresponding brain segments. The red cluster in Figure 3 is primarily influenced by the
cerebellum (18.15%) but it splits into two clusters colored red and blue, making up 36.39% in
slice 2 and 35.27% in slice 3 (Table S2). This suggests that the cerebellum may exhibit different
characteristics depending on its location and relationship with adjacent clusters. Additionally, the
clusters in the middle section, between slices 5 and 8, involve multiple ROIs in a complex manner.
Although this may necessitate cautious interpretation, it is worth noting that the hippocampus
(9.47% in the blue cluster at slice 6) and the thalamus (22.77% in the blue cluster at slice 8)
constitute a relatively higher percentage, in contrast to just white matter, gray matter, and
cerebellum, which are commonly dominant in all slices. In recent findings, it has come to light
that both the brain’s subcortex and cerebellum may serve as crucial functional brain nodes.
This has drawn attention to the importance of the functional network organization that includes
the subcortex and cerebellum (Seitzman et al., 2020). Slice 13 is predominantly composed of
gray matter (16.44%) and white matter (11.89%). The identified regions could be linked to the
dorsal frontoparietal network, consisting of the intraparietal sulcus and frontal eye fields. Age
may be related to changes in dorsal frontoparietal cognitive control network showing reduction
in an activity related to prospective memory (Lamichhane et al., 2018). Notably, our cluster
analysis grouped the cerebellum, which is suggested to be part of this network (Brissenden et al.,
2018), into a single cluster (depicted as the red cluster in Figure 3). Additional analyses, such as
measurements of gray matter volume or cortical thickness, could provide a more comprehensive
and confirmatory understanding of structural changes in the overall brain tissue.
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Setting 1 Accuracy  ARI CHI Silhouette Entropy
K-means 0.9467  0.8599 1501.0025 0.4178 0.1852
Gaussian Mixture  0.9566 ~ 0.8876 1492.0236 0.4193 0.1577
CRP 0.8111  0.6279 1299.0725 0.5101 0.0699
PDPMix 0.8122  0.6289 942.2243 0.8122 0.0646
RDMDP(1) 0.9578  0.8877 Inf 0.3736 0.1421
RDMDP (m) 0.9633  0.9035 975.3994 0.3922 0.1210
RDMDP(c) 0.9744  0.9326 1471.0668 0.4142 0.1043
Setting 2 Accuracy  ARI CHI Silhouette Entropy
K-means 0.9556  0.8754 1239.7903 0.4244 0.1676
Gaussian Mixture — 0.9622  0.8927 1237.4805 0.4258 0.1497
CRP 0.7633  0.6350 1267.7842 0.4901 0.0815
PDPMix 0.7622  0.6331 721.0106 0.4720 0.0762
RDMDP(1) 0.9644  0.8937 Inf 0.3473 0.1319
RDMDP(m) 0.9689  0.9111 806.8969 0.3869 0.1126
RDMDP(c) 0.98 0.9429 1218.2551 0.4244 0.0895

Table S1: Clustering performance measures of two simulation settings.

4 R Code

R code is available for the simulation using RDMDP method in online supplementary.
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Figure S3: White matter map (left) and RDMDP Clustering on white matter cubes (right).
Clusters wl and w2, according to Table 3, are colored red and blue. Cubes in gray are not used
for clustering because they contain fewer than 10 subjects. Each slice, arranged from left to right
and bottom to top, depicts a series of two-dimensional representations of cubes spanning from
the bottom to the top of the brain.

Figure S4: White matter map (left) and K-means Clustering on white matter cubes (right).
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cl = Red

c2 = Blue

c3 = Green

Slice 1

Slice 2

Slice 3

Slice 4

Slice 5

Slice 6

Slice 8

Slice 13

Cerebellum 18.15%
White matter 9.16%

Cerebellum 29.55%
White matter 2.77%

Cerebellum 47.54%
White matter 18.83%
Gray matter 4.61%

Cerebellum 34.06%
Gray matter 13.21%
White matter 4.00%

Gray matter 20.71%
White matter 12.10%
Cerebellum 6.07%

Gray matter 28.10%
White matter 26.05%

White matter 28.06%
Gray matter 26.44%
Thalamus 1.13%
Hippocampus 0.95%
Putamen 0.76%

Gray matter 16.44%
White matter 11.89%

White matter 6.3%

Cerebellum 3.72%

Gray matter 0.29%
Cerebellum 36.39%
White matter 17.52%
Gray matter 9.24%

Cerebellum 35.27%
Gray matter 8.67%
White matter 8.14%

Cerebellum 51.51%
Gray matter 16.14%
White matter 14.32%

Cerebellum 33.68%
Gray matter 24.12%
White matter 21.57%
Hippocampus 3.50%

White matter 39.10%
Gray matter 23.46%
Cerebellum 15.27%
Hippocampus 9.47%
Thalamus 5.32%
White matter 45.20%
Gray matter 25.76%
Thalamus 22.77%
Putamen 8.06%
Amygdala 6.08%

Cerebellum 8.73%
White matter 7.63%
Gray matter 2.2%
Gray matter 15.89%
White matter 9.33%
Cerebellum 8.14%
Amygdala 0.68%
Gray matter 20.83%
Cerebellum 20.69%
White matter 15.04%
Hippocampus 3.03%
Gray matter 2.23%
Whiter matter 20.98%
Hippocampus 6.87%
Amygdala 5.19%
Globus Pallidus 5.18%
White matter 26.13%
Gray matter 23.52%
Cerebellum 13.96%
Putamen 5.97%
Amygdala 5.85%
White matter 35.56%
Gray matter 23.76%
Caudate 13.10%
Putamen 8.66%
Amygdala 6.47%

Table S2: Top 5 ROIs. Three clusters (cl, ¢2, ¢3) from RDMDP in Figure 4 are used in this brain
segmentation analysis using 23 ROIs by ’BrainSeg’ in DSIStudio.
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