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Abstract

Brain imaging research poses challenges due to the intricate structure of the brain and the
absence of clearly discernible features in the images. In this study, we propose a technique for
analyzing brain image data identifying crucial regions relevant to patients’ conditions, specifically
focusing on Diffusion Tensor Imaging data. Our method utilizes the Bayesian Dirichlet process
prior incorporating generalized linear models, that enhances clustering performance while it ben-
efits from the flexibility of accommodating varying numbers of clusters. Our approach improves
the performance of identifying potential classes utilizing locational information by considering
the proximity between locations as clustering constraints. We apply our technique to a dataset
from Transforming Research and Clinical Knowledge in Traumatic Brain Injury study, aiming
to identify important regions in the brain’s gray matter, white matter, and overall brain tissue
that differentiate between young and old age groups. Additionally, we explore a link between
our discoveries and the existing outcomes in the field of brain network research.

Keywords adjacency matrix; Bayesian Dirichlet process prior; brain imaging; clustering;
pattern recognition

1 Introduction
Diffusion tensor imaging (DTI) is a modality of magnetic resonance imaging (MRI) that has
become increasingly popular as a diagnostic tool in the field of brain research (Soares et al.,
2013; Parekh et al., 2015; ElNakieb et al., 2021). It measures the movement of water molecules
in biological tissues, specifically in the white matter tracts of the brain, to gain insights into
the brain’s microstructures. DTI offers numerous advantages, including its non-invasiveness,
high spatial resolution, sensitivity to changes in white matter, and the ability to be combined
with other imaging modalities such as fMRI to study the relationship between brain structure
and function. DTI data are highly versatile, with applications ranging from research to clinical
diagnosis and treatment planning. In neuroscience research, DTI is used to investigate white
matter tracts and connectivity in various neurological and psychiatric disorders. Clinically, it
can help diagnose and monitor diseases such as multiple sclerosis, traumatic brain injury, and
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brain tumors (Kraus, 2023). Additionally, DTI data can assist clinicians in planning surgeries or
radiation treatments for brain tumors by identifying the location of crucial white matter tracts.
Overall, DTI is a powerful imaging tool that provides unique insights into the brain’s structural
connectivity and is widely useful in both research and clinical settings.

However, analyzing DTI or other types of brain imaging data is challenging due to the large
volume and complex nature of the data, as well as the statistical demands of analyzing multiple
tests. Interpreting this data requires a multidisciplinary approach that incorporates knowledge
of both brain anatomy and statistical modeling. Oftentimes, there is no established ground truth
for brain function or structure. Due to the challenges in comprehending the intricate connections
and functions between different brain regions, the options available for analyzing brain data are
limited (Jones and Cercignani, 2010; Jbabdi and Johansen-Berg, 2011; Schilling et al., 2019). To
address this, it is of great importance to develop suitable methods and demonstrate the feasibility
of data analysis, thereby effectively broadening the spectrum of choices accessible for analyzing
DTI data. An ideal approach for DTI data analysis would involve the identification of significant
potential structures throughout the entire brain. Ultimately, the intended method should assist
clinicians in the diagnosis and treatment of neurological disorders, benefiting patients.

Herein, we propose a novel method called Restricted Distance-dependent Mixtures of Dirich-
let Process (RDMDP) within the framework of the Dirichlet process mixture model. RDMDP is
proposed to address the need for identifying clustering related features, particularly in domains
such as healthcare image and geographic analysis. Our approach is primarily inspired by the
idea that brain regions sharing similar traits tend to be located near each other, reflecting the
structural organization of functional brain regions (Saad and Mansinghka, 2018). An illustrative
example provided in Wehrhahn et al. (2020) demonstrates disease clustering, which indicates an
expected emergence of a particular disease with a heightened likelihood of happening in close
proximity, both temporally and geographically. This serves as the foundation of our cluster-
ing approach and parallels the method proposed by Blei and Frazier (2011), which suggestes a
flexible distribution framework for clustering that considers the dependency of elements when
assessed based on a distance. Our method incorporates classification information and locational
contiguity to provide a form of pseudo-supervised learning. This imposes some level of constraint
on cluster modeling rather than allowing for completely unrestrained analysis. The goal is to
establish brain mapping that links interrelated regions of the brain, taking into account both
neighboring regions and the disease of interest. We aim to visually display this map in a man-
ner that conveys a clinically meaningful summary of the structural and functional relationships
within the brain. The proposed method adopts Bayesian nonparametric clustering (Orbanz and
Teh, 2010; Wade and Ghahramani, 2018; Seymour, 2020; Masoero et al., 2021; Xian and Wade,
2022; Creswell et al., 2023; Daniel Loyal and Chen, 2023) with a regression component for disease
mapping, under the assumption of a restricted Chinese Restaurant Process (CRP) (Fergusom,
1973; Escobar and West, 1995; Neal, 2000; Teh et al., 2006). Cluster assignments are empirically
generated by Markov Chain Monte Carlo (MCMC), where a changeable random partition is
allowed based on the posterior distribution over partitions, given the observed data and the
prior distribution assumed under CRP (Pitman, 1995) based on the Dirichlet prior.

We note that the Dirichlet prior has played an important role in the development of Bayesian
nonparametric methods and can be represented in various ways: stick-breaking process, Pólya
urn scheme, and CRP. Specifically, the CRP serves as an analogy for a Dirichlet Process (DP)
that assumes a customer enters a restaurant sequentially and chooses a table from an infinite
number of tables. The CRP is a commonly employed prior in Bayesian nonparametric models
and has been extended to include covariate, time, and space-dependent models, as well as hierar-
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chical mixture models (MacEachern, 2000; Teh et al., 2006; Griffin and Steel, 2006; Duan et al.,
2007). Numerous modifications and applications have been made to the original CRP, such as
nested CRP (Blei et al., 2007), distance-dependent CRP (Blei and Frazier, 2011), region-based
distance-dependent CRP (Ghosh et al., 2011), similarity-dependent CRP (Socher et al., 2011),
temporarily-reweighted CRP (Saad and Mansinghka, 2018), powered CRP (Lu et al., 2018) and
restricted CRP (RCRP) (Wehrhahn et al., 2020). Additionally, some imaging data applications
have been explored (Baldassano et al., 2015; Ren et al., 2016).

Overall characteristics of these modifications do not maintain the property of exchangeabil-
ity between subjects (Blei et al., 2007; Blei and Frazier, 2011). However, they offer advantages
and are used in many practical applications since they allow for greater control over the clus-
tering structure while imposing restrictions on the assignment of data points to clusters. These
modifications can be useful when some prior knowledge about the data is available. While they
may not be suitable for situations requiring conditional independence of components, they can
provide a flexible and powerful clustering method when used appropriately (Ahmed and Xing,
2008; Ghosh et al., 2011; Blei and Frazier, 2011).

In adapting the CRP for DTI data analysis, we consider two key factors. First, certain areas
in the brain may be highly associated with pathogenesis of specific disease or conditions, which
can be identified through disease status and observable quantities in DTI. Cluster assignments
may need to reflect these associations as they pertain to the structural patterns underlying
the pathophysiology of the condition. Second, data points that share locational proximity are
likely to form clusters together. Among the many variations of CRP, a modified version known
as restricted CRP (RCRP) addresses this issue by using an adjacency matrix. The method
enhances the coherence and consistency of the resulting cluster map for disease mapping purposes
(Wehrhahn et al., 2020). By employing this strategy, we limit the number of latent clusters
considered in the cluster assignment, using proximity information between data points.

In this article, we extend the regression-based CRP (Oganisian et al., 2021) to DTI anal-
ysis, aligning with Lan et al. (2021) and incorporating locational considerations. The proposed
approach offers flexibility and efficient implementation via MCMC, making it highly effective for
clustering and disease mapping applications (Seymour, 2020; Wehrhahn et al., 2020; Creswell
et al., 2023).

While RCRP effectively tackles locational challenges, it lacks the capacity to account for re-
lationships between observations and disease status within the model. In contrast, the regression-
based CRP overlooks locational information in its classification. By leveraging the strengths of
both methods, our method utilizes their respective advantages to enhance classification approach.

The following sections delineate the structure of the remainder of the paper. In Section 2,
we introduce RDMDP, the Restricted Distance-dependent Mixture Dirichlet Process as a tool
for identifying areas that reflect both phenotypical differences and the disease of interest. We
detail the MCMC algorithm that implements the proposed RDMDP and introduce methods for
summarizing partition data generated by MCMC iterations. In Section 3, we conduct a sim-
ulation study to demonstrate the performance of RDMDP in identifying interesting patterns
across various images and compare it to existing clustering techniques. In Section 4, we apply
our method to DTI data from TRACK-TBI, explaining data preparation and providing a de-
tailed account of the data analysis. We also discuss the interpretation of the results, comparing
partitions of brain regions based on gray matter, white matter and overall brain tissues. Finally,
Section 5 contains our concluding remarks.



540 Park, S. et al.

2 Method

2.1 Proposed Method: RDMDP

Let D = (D1, D2, . . ., Dn) be a set of data where Di = (Yi, Xi) consists of Yi for the binary
response and Xi for covariates. We define a set of parameters, θi = (βi, μi, ψi), where βi is a
parameter to describe the relationship between Yi and Xi , and μi and ψi are the mean and
variance vectors describing the covariate vector Xi = (Xi1, . . . , XiL)T , where L is the number
of covariates. The full conditional distribution of an individual data point given parameters is
expressed as

P(Di |θi) = P(Yi |Xi, θi)P (Xi |θi).

Specifically, we have

Yi |Xi, βi ∼ Bernoulli(φ(XT
i βi)),

Xi |μi, ψi ∼ p(xi |μi, ψi),

θi |G ∼ G,

G|α, G0 ∼ RCRP(α, G0, A), (1)

where φ is the inverse of a link function, p is the distribution of the covariate Xi , and G, with
its distribution denoted as RCRP(α, G0, A), signifies the parameter distribution based on the
RCRP prior G0 and α. Here, α is a non-negative concentration parameter for the RCRP prior.
The RCRP prior is restricted by an n×n adjacency matrix A = (ai,i′), a first-order neighborhood
matrix as we explain in the subsequent discussion within this section. Consequently, θi |G refers
to the random distribution of the i-th cluster parameter θi given the distribution G, therefore,
it is a distribution of distributions. The matrix’s element ai,i′ is an indicator function that shows
whether regions i and i ′ share a boundary, i.e., ai,i′ = 1 if sharing a boundary, or 0 otherwise.
The concentration parameter α controls the probability of assigning an observation to a new
cluster.

Let K indicate the random number of clusters and g = (g1, . . ., gn) is a cluster assignment
for n observations where gi is the i-th observation’s cluster membership. In a typical DP, given
cluster memberships of all other observations and α, the i-th observation is assigned to an
existing cluster k � K with probability proportional to the number of observations in existing
cluster k, or a new cluster with probability proportional to α

π(gi = k|g−i , α) ∝
{

nk(g−i ) if k � K(g−i )

α if k = K(g−i ) + 1
, (2)

where g−i = (g1, . . ., gi−1, gi+1, . . ., gn) is the cluster assignments for all other observations,
nk(g−i ) is the number of cluster k in g−i , and K(g−i ) is the total number of clusters in g−i .
The parameter θi of the i-th cluster follows a random distribution G from the Dirichlet process
DP(α, G0), a distribution of distributions, which induces a cluster structure of the parameter
space without assuming an exact number of clusters, estimating K directly from data. When
α reduces to 0, gi ’s are assigned to the same cluster since there is no probability of forming
a new cluster, and if α goes to ∞, gi ’s become all different clusters. The partition distri-
bution is a distribution of cluster memberships g = (g1, g2, . . . , gn). With regard to cluster
memberships gi(i = 1, . . ., n) and the random number of clusters K(g) for all subjects, the
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partition distribution is given by the probability P(g, K(g)|α > 0) = �(α)

�(α+n)
αK(g)

∏K(g)

j=1 �(nj )

where nj = ∑n
i=1 1(gi = k) is the number of elements in cluster k (k = 1, . . . , K(g)) and

�(z) = ∫∞
0 t z−1e−t dt is the Gamma function (Antoniak, 1974).

As shown in Equation (1), we adopt the RCRP with the adjacency matrix A that assigns
the observation to one of the clusters of observations sharing a boundary, or a new cluster
with probability proportional to α. This strategy gives rise to considering adjacent neighboring
clusters of regions. Thus, the partition distribution with regard to cluster memberships is now
given by

P(g|α, A) = αK(g)

C(α, A)

K(g)∏
j=1

nj (g)Q(g, A), (3)

where C(α, A) is a normalizing constant and Q(g, A) = 1 if g is a cluster membership assign-
ment that can be described by the adjacency matrix A (Wehrhahn et al., 2020). Under the
consideration of the adjacency, Equation (2) is modified as,

π(gi = k|g−i , α, A) ∝

⎧⎪⎨
⎪⎩

nk(g−i) if k � K(g−i ), Q(g, A) = 1

α if k = K(g−i ) + 1, Q(g, A) = 1

0 if Q(g, A) = 0

, (4)

In cluster assignments, an increasing trend of K is expected to be controlled by the use of
adjacency matrix A, since the cluster gi is derived by a restricted set of neighboring observations.

Based on the distributions above, first, we update α using a Metropolis-Hastings sampler.
The prior distribution for α is an inverse Gamma distribution IG(1, 1) (Roy et al., 2018). Similar
to an implementation by Oganisian et al. (2021), the proposed value of α∗ is generated from
N(α, 1), where α is the value in the previous step. For our parameter vector θ under the DP
prior, we accept the proposal with probability of min(1, H) where H is the Hastings acceptance
ratio. Since we assume a symmetric proposal density which is f (α|α∗) = f (α∗|α) for all α and
α∗, the ratio of the two proposal distributions f (α|α∗)

f (α∗|α)
is 1 and thus the acceptance ratio H is

expressed as

H = π(α∗)P (g|α∗, A)

π(α)P (g|α, A)

= exp

⎛
⎝ K∑

j=1

ln

(
nj + α∗

K

nj + α
K

)
− ln

(
n + α∗

n + α

)
− (K + 1) ln

(
α∗

α

)
−
(

1

α∗ − 1

α

)⎞⎠ . (5)

After updating α, we update the cluster-wise parameters θk = (βk, μk, φk), k = 1, . . . , K

conditional on cluster membership using a Bayesian binary probit regression model as described
in Albert and Chib (1993). First, let the prior distribution of βk be π(βk) over the model
parameters. Then, we obtain the posterior distribution of the model parameters as

p(βk|Yk, Xk) = π(βk)

nk∏
i=1

p(Yik|βk, Xik)

= π(βk)

nk∏
i=1

{	(XT
ikβk)}Yik {1 − 	(XT

ikβk)}1−Yik , (6)
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where 	 is the standard normal cumulative distribution function, and the subscript k in Zk and
Xk indicates the data within the k-th cluster. Assuming that there exists no conjugate prior
π(βk) for the parameters, a direct calculation of the posterior distribution above is difficult.
Instead, we augment the original Bayesian probit model with an additional latent variable Z

to compute the posterior distribution by using the conditional distributions equivalent to the
conditional distributions under a Bayesian normal linear regression model (Albert and Chib,
1993). For this, we assume Yik = I (Zik > 0) where Zik = XT

ikβk + εik with εik following the
standard normal distribution as

P(Yik = 1|Xik, βk) = P(XT
ikβk + εik > 0) = P(εik < XT

ikβk) = 	(XT
ikβk).

Taking into account the status of observed Yik, the full conditional distribution of Zk given
βk, Yk, Xk has the form

Zik|βk, Yik, Xik ∼
{

ψ(δ̄k, 1, −∞, 0) if Yik = 0,

ψ(δ̄k, 1, 0, ∞) if Yik = 1,

where ψ is a truncated normal distribution with mean δ̄k = XT
ikβk and variance 1 within an inter-

val (−∞, 0) or (0, ∞) for Yik = 0 and 1, respectively. The posterior distribution of p(βk|Zik, Xik)

in Equation (6) is expressed as

p(βk|Zk, Xk) = π(βk)

nk∏
i=1

p(Zik|βk, Xik). (7)

With a constant prior for βk, i.e., π(βk) ∝ 1, the conditional distribution (7) is given as
βk|Zk, Xk ∼ N((XT

k Xk)
−1XT

k Zk, (X
T
k Xk)

−1). Assume the proper conjugate prior for βk as π(βk) ∼
N(β0, P0). Then, we have βk|Zk, Xk ∼ N((P −1

0 + XT
k Xk)

−1(P −1
0 βk,old + XT

k Zk), (P
−1
0 + XT

k Xk)
−1)

using the previous draw βk,old .
Next, we update the mean and variance μlk and φlk of the covariates for the l-th covariate

(l = 1, . . . , p) in cluster k by Gibbs samplers. The priors used are μlk ∼ N(m0, v0) and φlk ∼
IG(g0, b0). The covariates are sampled from the posterior distributions

μ
(t+1)
lk ∼ N

⎛
⎜⎝

m0
v0

+
∑nk

j=1 Xlj

φ
(t)
lk

1
v0

+ nk

φ
(t)
lk

,

√√√√ 1
1
v0

+ nk

φ
(t)
lk

⎞
⎟⎠ ,

φ
(t+1)
lk ∼ IG

⎛
⎝g0 + nk

2
,

1

2

nk∑
j=1

(
Xlj − μ

(t+1)
lk

)
+ b0

⎞
⎠ ,

where
∑nk

j=1 Xlj indicates the sum of Xlj within cluster k. The hyperparameters m0 and v0 are
determined by the mean and variance matrix of covariates βk, but for v0, the variance matrix is
multiplied by an identity matrix with a small constant, i.e., 0.001 to keep noise under control.
Although there is no theoretical guidance, the hyperparameter g0 is given as a constant, i.e.,
g0 = 2, and b0 is the variance of Xjk, as suggested to bring the center of the prior distribution
closer to the empirically estimated values based on observed data (Oganisian and Roy, 2021).

Now, we sample θi |D as

P(θi |D) ∝ 1

α + i − 1

{
αP (Di |θi)G0(θi) +

∑
j<i

P (Di |θj )δθj
(θi)
}
Q(g, A),
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where δθj
(θi) is a Dirac measure of θj whose value is 1 if the i-th and j -th observations are in

the same cluster, or 0 otherwise, and G0(θi) is a prior.
∑

j<i P (Di |θj ) expresses the posterior
distribution of the data based on the prior distribution in Equation (4). After updating both
the concentration parameter α and the set of parameters θ , we update the cluster membership
of the i-th observation via MCMC samplers using the categorical distribution

g
(t+1)
i |g(t)

−i ∼ Cat

(
1

α + i − 1
P ∗
(
Di |θ(t+1)

1

)
Q(g(t), A), . . . ,

1

α + i − 1
P ∗
(
Di |θ(t+1)

i−1

)
Q(g(t), A),

α

α + i − 1
P ∗
(
Di |θ(t+1)

0

)
Q(g(t), A)

)
,

where P ∗(Di |θ(t+1)
k ) is the scaled posterior distribution P(Di |θ(t+1)

k ) to be a probability given by
the parameters at (t + 1)-th iteration, Q(gi, A) is an indicator determined by the neighbors of
the i-th observation and the adjacency matrix A.

Oganisian et al. (2021) offers an R function called ‘PDPMix’ for posterior sampling of
DP mixture of logistic regression in the R package ‘ChiRP’ (Oganisian, 2019), extending the
traditional CRP method by incorporating a regression model to capture the relationship between
the covariates and the cluster assignments. For the implementation of our proposed method, we
modified PDPMix and summarized partition results from MCMC iterations as shown in the
following section.

2.2 Summary of MCMC Iterations
Mode clustering

Inference in Bayesian nonparametric clustering models usually relies on MCMC techniques,
which produce a large number of cluster assignments approximating samples from the posterior
distribution. However, displaying all unique clustering results is neither feasible nor applicable
in real data analysis. To address this, various efforts have been made to summarize the itera-
tions and construct a final cluster result from the entire set of iterations. These methods include
multi-clustering fusion techniques such as ‘boost-clustering’ (Frossyniotis et al., 2004), posterior
mode (Heller and Ghahramani, 2005; Dahl, 2009; Raykov et al., 2016), and posterior similarity
matrices (Medvedovic and Sivaganesan, 2002; Medvedovic et al., 2004; Rasmussen et al., 2008).
The posterior mode clustering is defined as the partition that maximizes the posterior distri-
bution p(π |D) of the parameter of interest over the entire partition space. This is also known
as the maximum a posteriori (MAP) and is often obtained through the optimal Bayes estimate
of the clustering under a specific loss function, such as 0-1 loss. In our example, we use mode
clustering in the application of the posterior similarity matrix. We consider label switching since
cluster information is a nominal variable and not fixed; that is, cluster 1 at iteration i could
correspond to cluster 2 at iteration i + 1. The issue is resolved through deterministic relabeling
of clusters based on posterior sampling (Rodriguez and Walker, 2014). The optimal cluster is
determined by finding the posterior mode matrix that minimizes the L2 loss. Each element of
the matrix represents the average number of times that subjects i and j are assigned to the
same cluster across all iterations.

Credible ball
Bayesian clustering outputs typically consist of the posterior mode, obtained from multiple
sets of cluster structures generated through MCMC iterations. Wade and Ghahramani (2018)
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offers an approach for point estimation of the posterior distribution by defining credible balls,
which represent the posterior distribution over the entire clustering space. These credible balls,
equivalent to credible intervals, reflect the uncertainty in the clustering structure given the data.
To compare cluster assignments from two iterations (c1, c2), a modified loss function known as
the variation of information (VI) is used as follows (Meilă, 2007):

VI(c1, c2) = H(c1) + H(c2) − 2I (c1, c2),

where H(ci) is the entropy of the cluster assignment ci measuring the uncertainty of a particular
clustering, and I (c1, c2) is the mutual information between two clustering assignments c1, c2,
indicating the decrease in uncertainty of data points’ cluster assignment in c1 given its clustering
assignment in c2 (Wade and Ghahramani, 2018). Under the application of VI, the optimal
partition c∗ is found by identifying the cluster assignment with the minimum expected VI given
the data D as follows:

c∗ = argminc2
E(VI(c1, c2|D))

= argminc2

⎡
⎣ n∑

i=1

log

⎧⎨
⎩

n∑
j=1

1(c2j = c2i )

⎫⎬
⎭− 2

n∑
i=1

E

⎧⎨
⎩log

⎛
⎝ n∑

j=1

1(c1j = c1i , c2j = c2i )|D
⎞
⎠
⎫⎬
⎭
⎤
⎦ ,

where c1i and c2i indicate the i-th subject’s cluster given c1 and c2, respectively, and the expec-
tation in the second term is approximated by the posterior similarity matrix using the entire
MCMC cluster assignments (Wade and Ghahramani, 2018).

Let d(c1, c2) indicate a distance metric such as VI between cluster assignment c1 and c2,
and C indicate the space of partitions. Then, a ball around c1 of size ε is constructed as Bε(c1) =
{c2 ∈ C : d(c1, c2) � ε}, reflecting an intuition of the closest set of clusters to c1. The credible
ball is defined to characterize the uncertainty in the point estimate c∗ with a given credible level
1 − α, α ∈ [0, 1], as Bε∗(c∗) = {c1 : d(c∗, c1) � ε∗} where ε∗ is the smallest ε � 0 such that
P(Bε(c

∗)|D) � 1 − α. An R package ‘mcclust.ext’ finds a cluster assignment minimizing the
posterior expected VI (Wade and Wade, 2015).

3 Simulation Study

3.1 Image Simulation
We conduct two simulation studies to demonstrate the performance of our proposed RDMDP
model in identifying different patterns in images. We first generate image patterns on a 30 × 30
grid, consisting of 900 locations. An adjacency matrix defines the spatial relationship between
locations based on a binary first-order neighborhood structure (Figure 1). In the simulation,
we first generate observations within each cluster. Each observation comprises three numerical
data points (v1,v2,v3) drawn from a multivariate normal distribution, as well as a random binary
outcome (z) generated from a Probit model based on the covariates of v1,v2 and v3. For each
location on the 30 × 30 grid, starting from the bottom-left corner, we randomly assign a cluster
label in accordance with the binary first-order neighborhood structure. The pattern in Figure 1
is designed to resemble the spatial connections in a disease map, as presented in Wehrhahn et al.
(2020), where adjacent locations are likely to share the same cluster memberships. To simulate
this pattern, we determine the ground truth class assignment for each grid location based on a
basic rule: it assigns a class with a probability of 0.9 using the class information of neighboring
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Figure 1: Simulation results of Pattern 1.

Figure 2: Simulation results of Pattern 2.

grids. The number of neighboring grid clusters in this example ranges from three to eight. At
each location, the associated data are drawn from the pool of generated data according to the
assigned clusters. The different clusters are color-coded in red, green, and blue, respectively.

For an alternative cluster assignment strategy, we also generate patterns where the images
consist of streaks of clusters (Figure 2). The pattern in Figure 2 features a combination of
elongated rectangles within the 30 × 30 grid, varying in width and length. This design is inspired
by de Stijl art (Wilkins et al., 2009). According to this pattern, we assign three ground truth
classes to each location following the predetermined pattern. Associated numeric and binary data
are similarly assigned using the method mentioned earlier. The first images (top-left image) in
Figure 1 and Figure 2 represent the ground truth patterns. We evaluate the performance of
pattern identification by both the RDMDP and other existing techniques in comparison with
these ground truth patterns.
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3.2 Comparison Methods
We compare the performance of our proposed RDMDP model with existing techniques such as
K-means clustering, hierarchical mixture model, and regression-based and non-regression-based
CRP models. Although DP-based clustering can be considered a nonparametric version of K-
means, as suggested by Raykov et al. (2016), there are notable distinctions in both methodology
and performance that warrant further investigation.

K-means clustering (K-means) is a widely used algorithm in unsupervised learning due to
its simplicity (Hartigan and Wong, 1979). It aims to group data points into K clusters based
on centroids, resulting in the minimum total within-cluster variance. The optimal value of K is
typically determined by examining the scree plot.

Gaussian mixture modeling for clustering (Gaussian mixture) employs finite Gaussian mix-
ture models for model-based clustering using the finite Gaussian mixture models (Fraley et al.,
2012). The algorithm is initiated with hierarchical model-based agglomerative clustering and
selects up to nine clusters using the BIC criteria. The Expectation-Maximization (EM) steps
estimate the conditional probability of the i-th data point being assigned to cluster k, given
the current parameter estimates, and compute the maximum likelihood estimates of the pa-
rameters based on these conditional probabilities. This method has the advantage of handling
complex data structures by providing detailed relationships between data points. However, its
performance suffers when the components are not well-separated. Unlike predetermined K from
K-means and optimized K from EM-based optimization from Gaussian mixture, CRP models
determine the number of clusters empirically in a Bayesian approach.

The regression-based CRP model, implemented using the ‘PDPMix’ function in the R pack-
age ‘ChiRP’ (PDPMix), employs a probabilistic approach within the realm of Bayesian nonpara-
metric methods to cluster data based on a set of features or covariates. Unlike traditional CRP
models, the regression-based CRP variants such as PDPMix include a regression component
that allows the probability of a data point joining a specific cluster to depend on its features
or covariates. This regression component assesses the likelihood of a data point being explained
by the regression model, given the coefficients of its covariates. The regression-based CRP is
particularly useful when there is a strong correlation between the covariates and the response
variable, as it enables more accurate clustering based on their relationships. Various types of
regression models, including linear regression, logistic regression, and Gaussian processes, can
be used in implementing the regression-based CRP. In practice, the regression model is trained
using Bayesian methods, allowing for the uncertainty in model parameters to be incorporated
into the clustering process.

For comparison purposes, we also modify the regression-based CRP by omitting the regres-
sion component. In this version, the relationship between the outcome data and the covariates
is not considered. We refer to this method simply as CRP. Additional simulation results based
on replicated ground truth figures are also provided in Supplementary Material 2.

3.3 Comparisons Between Clustering Methods
The ground truth patterns and their corresponding clustering results are displayed in Figures 1
and 2. Cluster assignments obtained from MCMC are presented in three ways: the last iteration,
mode clustering, and credible ball. In Figure 1, for the K-means clustering method, the number
K is selected to be 3 based on the elbow observed in the scree plot. While most methods effec-
tively distinguish the green area in the pattern, significant confusion appears between the red
and blue areas in cluster assignments. The bottom-right blue area in the ground truth is not
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Table 1: Clustering performance measures of two patterns. K-means, Gaussian mixture, CRP
and PDPMix do not consider pixel location, while RDMDP utilizes an adjacency matrix for
locational variation caused by covariates and location. RDMDP results are represented by three
outcomes (l: last iteration, m: mode clustering, c: credible ball).

Pattern 1 Silhouette Entropy ARI CHI Median rank

K-means 0.3209 0.3637 0.6145 89.4481 6
Gaussian Mixture 0.2796 0.9034 0.4370 83.9682 7
CRP 0.2821 0.2707 0.7628 603.888 4.5
PDPMix 0.3102 0.2567 0.6854 597.9104 4
RDMDP(l) 0.2647 0.2256 1.0000 202.9998 3
RDMDP(m) 0.3153 0.2285 0.7047 593.1295 3
RDMDP(c) 0.3179 0.2443 0.7976 360.59 2.5

Pattern 2 Silhouette Entropy ARI CHI Median rank

K-means 0.2019 0.6167 0.3858 26.3301 4.5
Gaussian Mixture 0.1820 0.9703 0.2012 10.2430 7
CRP 0.1478 0.4811 0.6395 633.4640 3
PDPMix 0.1411 0.4662 0.6809 631.8258 2.5
RDMDP(l) 0.1459 0.6655 1.0000 339.2168 5.5
RDMDP(m) 0.1796 0.6207 0.3903 396.4520 4
RDMDP(c) 0.3476 0.4225 0.3691 635.2373 1

well captured by the Gaussian mixture modeling for clustering method. Although both K-means
and RDMDP accurately identify the true blue pattern, K-means shows more blue assignments
in the central red area than RDMDP. Among the summarization methods for RDMDP, we note
that the mode clustering method exhibits the best performance. The credible ball method tends
to have more misclassifications in the red area compared to mode clustering. We also include the
cluster assignments from the last MCMC iteration for RDMDP. As expected, the last iteration
reveals miscellaneous and small clusters, although the overall patterns are similar to summa-
rized patterns from MCMC. Clustering performance indices do not consistently demonstrate the
superiority of any single method (Table 1). Therefore, we calculate the median rank using ranks
based on silhouette, entropy, adjusted rand index (ARI), and Calinski-Harabasz index (CHI).
Comparisons of clustering performance indices using mode clustering and credible ball methods
show either the best performances or performance comparable to other methods. These results
underscore the superiority of RDMDP algorithms over alternative methods.

In Figure 2, the Gaussian mixture modeling for clustering method fails to identify any
meaningful pattern, assigning all locations to a single cluster. In both regression-based CRP
and original CRP, the red and blue patterns are combined and assigned to one cluster. K-means
clustering, guided by the scree plot, selects four clusters but fails to distinguish the blue and green
patterns. It also introduces a new cluster, represented by the color purple, that extends across
both the green and blue areas. On the other hand, RDMDP with mode clustering better identifies
the streak patterns compared to other methods. A comparison of clustering performance indices
based on their median rank reveals that RDMDP with credible ball ranks the best among all
methods, underscoring the effectiveness of RDMDP. However, this method fails to recognize the
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blue cluster in the actual pattern. Although regression-based CRP and original CRP perform
better in terms of clustering indices, RDMDP with mode clustering still achieves values that
are comparable. The performance of RDMDP with mode clustering, particularly its ability
to determine the optimal number of clusters and effectively differentiate between the red and
blue clusters, strongly suggests that it may be the preferred method for pattern identification
compared to other clustering techniques.

4 Real Data Analysis
By employing clustering techniques on brain regions, we conduct an exploratory analysis for
feature selection and partitioning of brain regions. This allows us to gain initial insights into
the overall structure of the brain. Using the proposed method RDMDP, our goal is to identify
clusters of regions that exhibit a strong correlation with specific phenotypes, such as age groups.

4.1 Data Source

We use data from Transforming Research and Clinical Knowledge in Traumatic Brain Injury
(TRACK-TBI) study, conducted by the International Traumatic Brain Injury Research Ini-
tiative (https://tracktbi.ucsf.edu/transforming-research-and-clinical-knowledge-tbi). The study
aims to advance our understanding of TBI pathophysiology and improve patient selection and
stratification in future clinical trials through the validation of imaging biomarkers in DTI. Data
were collected from participating trauma patients at multiple centers in the US from 2013 to
2018 and are shared through the Federal Interagency Traumatic Brain Injury Research (FIT-
BIR) informatics system (https://fitbir.nih.gov). The study includes 2,539 adult patients with
TBI, with age ranging from 0 to over 90. The patients consist of 69% male. The downloadable
data sets contain demographic data such as age and sex, as well as imaging biomarkers such as
DTI scans.

A total of 47 subjects in the younger age group (age < 52 years) have fully available DTI
scans. To create a balanced comparison group, we randomly select 47 subjects from the older
age group (age � 52 years). Age 52 is selected as the age cut-off point based on previous clinical
studies, which have indicated that declines in brain structure and cognitive functions can be
observed when comparing groups divided by a certain age threshold. This threshold is based on
accelerated changes that occur in the brain between the middle ages of 40 and 59 (e.g., Elliott
et al. (2021); Park and Festini (2016)). For these 94 subjects, we obtain baseline DTI scans
in the Neuroimaging Informatic Technology Initiative (NIfTI) format, along with demographic
information.

DTI scans are standardized into the MNI152 template. Subsequently, the DTI tensor for
each voxel is estimated and can be visualized using RGB color mapping to correspond to trans-
verse, anteroposterior, and superior-inferior directions. After this estimation step, we export DTI
metrics based on diffusion in compressed NIfTI format. These processes are carried out using
DSIStudio (http://dsi-studio.labsolver.org/). Once the DTI metrics are exported, the data can
be imported into R using packages such as ‘oro.nifti’ (Whitcher et al., 2011). DTI has dimensions
of 128 × 128 × 59 (973,312 voxels) or 256 × 256 × 59 (3,875,328 voxels), depending on the
resolution of the images.

https://tracktbi.ucsf.edu/transforming-research-and-clinical-knowledge-tbi
https://fitbir.nih.gov
http://dsi-studio.labsolver.org/
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4.2 Data Preparation
To reduce the computational burden, we combine neighboring voxels and calculate the average
values of DTI metrics. To preserve the integrity of major structural components of the brain,
such as its distinct lobes, it is crucial to ensure that the aggregated volumes are appropriately
small. We define a constant size for unit cubes in the 3D DTI. For example, one cube contains
16 × 16 × 5 voxels on x, y, and z axes where the x-axis represents the left-right direction, the
y-axis represents the anterior-posterior direction, and the z-axis represents the superior-inferior
direction. Cubes on the boundary may contain fewer voxels. This approach results in a total of
3,328 cubes, each with dimensions of 16 × 16 × 13, effectively covering the whole brain while
considerably reducing the dimensionality. For each cube, we calculate average DTI metrics (FA,
MD, AD, RD) and strengths of diffusion in three directions (Dir1, Dir2, Dir3) for 94 subjects.
The size of the unit cube may vary depending on the level of detail desired by the researcher, and
the optimal sizes can be determined empirically during data analysis and result interpretation.

We then narrow down the selection to 651 cubes from the initial pool of 3,328 (16 × 16
× 13) cubes. These selected cubes contain data from more than 10 subjects and are used for
cube-based analyses such as logistic regression or K-means clustering. In logistic regression,
we model the age group using covariates that consist of subject-level summaries (i.e., averages
and standard deviations) of DTI metrics and strengths in each direction. K-means clustering
includes the age group as a covariate, along with DTI metrics and strengths of directions. For
each cube, we estimate the predictive ability of the binary age group as either the area under
the receiver operating characteristic curve (AUC) using logistic regression, or entropy using K-
means clustering. AUC is a metric used for evaluating the performance of binary classification,
while entropy measures uncertainty in clustering. We then create a classification index (CI) using
either binary AUC or binary entropy. Using AUC, CI is 1 if the AUC exceeds a threshold (0.7
in our analysis) or 0 otherwise. Using entropy, CI is 1 if entropy is less than a threshold (0.5 in
our analysis), or 0 otherwise. The final dataset has dimensions of 651 × 471, where 471 includes
two DTI metrics (FA, MD) and the three strengths of directions for 94 subjects, as well as the
CI for each cube. DTI metrics such as AD and RD are excluded from the final dataset since
most classification patterns in AD and RD overlap with FA. We analyze the prepared data using
RDMDP and, for comparison, K-means clustering.

Since the cubes encompass all brain tissues, we create separate datasets for white matter
and gray matter, maintaining the data structures described above. In DSIStudio, we export
the selected regions of white matter and gray matter to separate NIfTI files by filtering them
out from the whole-brain scan. These files contain a binary variable indicating whether a given
location in the x, y, z axes has white or gray matter in the voxel.

4.3 Results
Clustering results from RDMDP and K-means clustering, using the whole-brain tissue data, are
compared in Table 2. This comparison focuses on the average values of DTI metrics assigned
to each cluster. The scree plot helps to identify the optimal number of clusters for K-means
clustering. For RDMDP, the mode clustering method involves 5,000 MCMC iterations following
a 1,000-iteration burn-in period and determines the number of clusters. RDMDP identifies one
distinctive cluster (c1) with a high mean binary AUC, as shown in Table 2. The mean FA values
are lower in the red cluster (c1), at 0.3446, compared to those in the blue (c2) and green (c3)
clusters, which have values of 0.9907 and 0.9019, respectively. Lower FA values may suggest that
the tissue in these clusters is less structurally intact (Basser and Jones, 2002).
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Table 2: Clustering results of 651 cubes (whole brain scans). c1, c2, and c3 refer to three clusters
determined by our proposed method and K-means. FA: the average of the FA in all cubes by
each cluster, same for other metrics; AUC07, Ent : the averages of binary values (0 or 1) of
classification indices.

RDMDP FA MD Dir1 Dir2 Dir3 AUC07 Ent

c1 0.3446 -0.0058 -0.0082 0.0065 0.0518 0.7816 0.8506
c2 0.9907 0.0135 -0.0035 0.0020 0.2391 0.0190 0.9924
c3 0.9019 -0.0210 -0.0070 0.0067 0.1192 0.2383 0.8738

K-means FA MD Dir1 Dir2 Dir3 AUC07 Ent

c1 1.0092 0.0012 -0.0043 0.0041 0.2025 0.0558 0.9563
c2 0.2806 -0.0120 -0.0077 0.0045 0.0560 0.8303 0.8667
c3 0.6950 -0.0062 -0.0109 0.0090 0.0640 0.4324 0.7973

Table 3: Clustering results of 504 cubes (white matter). RDMDP identifies clusters w1 and w2,
and K-means clustering identify clusters w1, w2 and w3. FA refers to the average of FA in all
cubes by each cluster, and same for other DTI metrics (FA, MD, Dir1, Dir2, Dir3). AUC07 and
Ent are the averages of binary values (0 or 1) of classification indices.

RDMDP FA MD Dir1 Dir2 Dir3 AUC07 Ent

w1 0.8382 0.0045 -0.0065 0.0046 0.2672 0.0387 0.9903
w2 0.3777 -0.0010 -0.0035 0.0020 0.0705 0.5825 0.9278

K-means FA MD Dir1 Dir2 Dir3 AUC07 Ent

w1 0.8430 0.0063 -0.0060 0.0028 0.2651 0.0478 0.9873
w2 0.4050 -0.0055 -0.0049 5E-4 0.0837 0.5543 0.9674
w3 0.3180 -0.0027 -0.0036 0.0090 0.0567 0.6020 0.8980

Figures 3 and 4 illustrate the spatial distribution of clusters from RDMDP and K-means
clustering, respectively, across 13 x-y slices (each comprising 16 x 16 cubes) in the z direction.
These slices cover the entire span from the bottom (1st slice) to the top (13th slice) of the
brain. The cluster c1 (colored red) identified by RDMDP is mainly located at the bottom and
top boundaries of the brain (1st, 2nd, 11th, and 12th slices by z-axis) and notably occupies the
entire top of the brain (13th slice by z-axis). It is evident that the cluster c1 does not align
well with areas of white matter, as shown in the white matter map in Supplementary Figure
S3. On the other hand, clustering results based solely on white matter using RDMDP identify
two clusters (colored red and blue in Supplementary Figure S3). These are comparable to the
blue (c2) and green (c3) clusters in Figure 3. The average values of DTI metrics for clusters c2
and c3 in Tables 2 and for clusters w1 and w2 in Table 3 are similar in terms of both relative
magnitude and direction. Based on these observations, it can be inferred that clusters c2 and c3
in Figure 3 are primarily influenced by the white matter.

The interpretation offered by RDMDP appears clearer (Figure 3) than that provided by
K-means clustering, which lacks a similar level of clarity (Figure 4). In K-means clustering, two
identified clusters (c2 and c3) display relatively high mean binary AUC values, as opposed to a
distinctive high value achieved by cluster c1 in RDMDP in clustering (Table 2). RDMDP (Fig-
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Figure 3: RDMDP clustering on 651 cubes. The clustering for all 13 layers were done all together
and displayed by each layer in this figure. Clusters c1, c2, and c3, according to Table 2, are colored
red, blue and green, respectively. Cubes in gray are not used for clustering because they contain
fewer than 10 subjects. Each slice, arranged from left to right and bottom to top, depicts a series
of two-dimensional representations of cubes spanning from the bottom to the top of the brain.
Grey = Brain part not clustered, Red = c1, Blue = c2, Green = c3.

Figure 4: K-means clustering on 651 cubes where at least 10 subjects have DTI on each cube.
Grey = brain part not clustered, red = c1, blue = c2, green = c3.
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ure 3) reveals a stripe of the blue cluster that expands from the left to the right side of the brain,
a pattern that is not distinguishable in K-means clustering (Figure 4). Notably, clustering re-
sults obtained from K-means clustering based solely on white matter (Supplementary Figure S4)
exhibit patterns remarkably similar to those achieved through RDMDP (Supplementary Figure
S3). This suggests that clustering performance is more influenced by the DTI metrics themselves
than by age classification. Furthermore, K-means clustering does not effectively isolate the region
associated with age when using data based on whole-brain tissues (AUC07 in Table 2).

The spatial distribution of the red cluster identified by RDMDP (Figure 3) suggests that the
associated region is not primarily composed of white matter. Instead, this region may contain
other components, such as gray matter or other non-white matter structures.

Numerous studies have shown age-related decreases in the volume of various brain regions.
The regions identified through RDMDP could be especially susceptible to age-related degener-
ation. For example, Bernard and Seidler (2014) highlighted age-related volume changes in the
cerebellum. However, evidence suggests that age-related differences in diffusion properties, as
measured by DTI, may be more sensitive indicators of age-related changes than volumetric mea-
sures (Leritz et al., 2014). To delve deeper into this, we utilized 23 regions of interest (ROIs) from
BrainSeg in DSIStudio. Our findings suggest that the bottom part of the brain, specifically in
slices 1 to 3, may be related to the cerebellum (Supplementary Table S2).This observation aligns
with the presence of the red cluster identified in our RDMDP analysis (Figure 3), supporting
the hypothesis of age-related changes in cerebellum DTI metrics. More discussions relevant to
the connection between identified clusters and ROIs are found in the Supplementary Material 3.

5 Discussion
In this article, we introduced the RDMDP method, which capitalized on the advantages of
Bayesian nonparametric approaches for pattern identification. Our simulation demonstrated
that RDMDP was either comparable or superior to existing clustering methods such as K-means,
Gaussian mixture model for clustering, and the original and regression-based CRP methods. We
detailed the steps involved in data preparation to make it suitable for analysis and conducted a
thorough examination of the results. Through both simulation studies and the analysis of DTI
data from the TRACK-TBI study, we showcased the benefit of RDMDP in yielding a nuanced
understanding of brain structure.

The proposed method based on the Dirichlet mixture model shows considerable promise for
several compelling reasons. First, a key strength of this approach lies in its ability to identify
clusters without requiring a priori specification of the number of clusters. This is particularly
valuable in situations where ground truth is not available and the data structures are complex.
Second, our method integrates the relationships between patients’ conditions and DTI metrics
at individual locations, potentially identifying clinically significant patterns and negating the
need for manual annotation of ROIs. Third, our method assumes that clusters with similar
characteristics are more likely to be in close proximity to one another, an assumption that
aligns with the anatomical organization of functional brain areas (Saatman et al., 2008; Blei and
Frazier, 2011; Wehrhahn et al., 2020).

However, there are avenues for further investigation. Specifically, the use of a single cube size
to encompass multiple tissue types may introduce excessive variability into our measurements,
especially when ground truth is not available. On a technical level, some voxels within a cluster
may be uninformative and offer no insight (Lazar, 2008). Separating these uninformative voxels
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from informative ones could enhance both the performance and interpretability of our method.
Additionally, translating the results of clustering into clinically interpretable information remains
a challenge.

For future directions, we aim to delve deeper into the study of specific brain regions, such
as the cerebellum, in relation to both white and gray matter. This will provide a more detailed
understanding of these regions and contribute to our overarching goal of improved brain map-
ping. It is known that the aging brain exhibits redundancy, meaning it possesses multiple regions
or networks capable of performing similar functions (Sadiq et al., 2021). Additionally, the brain
shows plasticity by continually reorganizing itself through the formation of new neural connec-
tions over the course of one’s life (Park and Bischof, 2022). Furthermore, the aging brain has
adaptability by employing compensation mechanisms to address age-related changes or declines
in specific functions (Stern et al., 2019). In the analysis of age-related brain imaging data, we
may need to take into account not only the patterns and clusters in the data but also consider
how the brain’s functional redundancy, plasticity, and compensation mechanisms might influ-
ence or shape those patterns. This understanding may draw comprehensive conclusions from the
analysis in the future.

In conclusion, RDMDP offers a promising approach to addressing both technical and clinical
challenges in neuroscience, particularly in the evolving field of DTI analysis methods. Its capacity
to identify clinically relevant clusters without manual annotation and its demonstrated ability to
provide a coherent interpretation of brain structure make it a valuable tool for future research.

Data and Code Availability Statement
The dataset is available on FITBIR website with administrative approval. The R code for RD-
MDP is available online as the Supplementary Material.
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Supplementary Materials include a MCMC algorithm for RDMDP method, a simulation study
for 100 replications, explanation of the connection between identified brain clusters and the
region of interest, and the statement regarding R code for the RDMDP method.
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