Imbalanced datasets present a significant challenge for machine learning models, often leading to biased predictions. To address this issue, data augmentation techniques are widely used to generate new samples for the minority class. However, in this paper, we challenge the common assumption that data augmentation is necessary to improve predictions on imbalanced datasets. Instead, we argue that adjusting the classifier cutoffs without data augmentation can produce similar results to oversampling techniques. Our study provides theoretical and empirical evidence to support this claim. Our findings contribute to a better understanding of the strengths and limitations of different approaches to dealing with imbalanced data, and help researchers and practitioners make informed decisions about which methods to use for a given task.
Abstract: This paper extends the analysis of the bivariate Seemingly Unrelated (SUR) Tobit by modeling its nonlinear dependence structure through copula and assuming non-normal marginal error distributions. For model estimation, the use of copula methods enables the use of the (classical) Inference Function for Margins (IFM) method by Joe and Xu (1996), which is more computationally attractive (feasible) than the full maximum likelihood approach. However, our simulation study shows that the IFM method provides a biased estimate of the copula parameter in the presence of censored observations in both margins. In order to obtain an unbiased estimate of the copula association parameter, we propose/develop a modified version of the IFM method, which we refer to as Inference Function for Augmented Margins (IFAM). Since the usual asymptotic approach, that is the computation of the asymptotic covariance matrix of the parameter estimates, is troublesome, we propose the use of resampling procedures (bootstrap methods) to obtain confidence intervals for the copula-based SUR Tobit model parameters. The satisfactory results from the simulation and empirical studies indicate the adequate performance of our proposed model and methods. We illustrate our procedure using bivariate data on consumption of salad dressings and lettuce by U.S. individuals.
Abstract: Many nations’ defence departments use capabilitybased planning to guide their investment and divestment decisions. This planning process involves a variety of data that in its raw form is difficult for decisionmakers to use. In this paper we describe how dimensionality reduction and partition clustering are used in the Canadian Armed Forces to create visualizations that convey how important military capabilities are in planning scenarios and how much capacity the planned force structure has to provide the capabilities. Together, these visualizations give decisionmakers an overview of which capabilities may require investment or may be candidates for divestment.
Probabilistic topic models have become a standard in modern machine learning to deal with a wide range of applications. Representing data by dimensional reduction of mixture proportion extracted from topic models is not only richer in semantics interpretation, but could also be informative for classification tasks. In this paper, we describe the Topic Model Kernel (TMK), a topicbased kernel for Support Vector Machine classification on data being processed by probabilistic topic models. The applicability of our proposed kernel is demonstrated in several classification tasks with real world datasets. TMK outperforms existing kernels on the distributional features and give comparative results on nonprobabilistic data types.