This study analyzes the impact of the COVID-19 pandemic on subjective well-being as measured through Twitter for the countries of Japan and Italy. In the first nine months of 2020, the Twitter indicators dropped by 11.7% for Italy and 8.3% for Japan compared to the last two months of 2019, and even more compared to their historical means. To understand what affected the Twitter mood so strongly, the study considers a pool of potential factors including: climate and air quality data, number of COVID-19 cases and deaths, Facebook COVID-19 and flu-like symptoms global survey data, coronavirus-related Google search data, policy intervention measures, human mobility data, macro economic variables, as well as health and stress proxy variables. This study proposes a framework to analyse and assess the relative impact of these external factors on the dynamic of Twitter mood and further implements a structural model to describe the underlying concept of subjective well-being. It turns out that prolonged mobility restrictions, flu and Covid-like symptoms, economic uncertainty and low levels of quality in social interactions have a negative impact on well-being.
Abstract: This paper is concerned with the change point analysis in a general class of distributions. The quasi-Bayes and likelihood ratio test procedures are considered to test the null hypothesis of no change point. Exact and asymptotic behaviors of the two test statistics are derived. To compare the performances of two test procedures, numerical significance levels and powers of tests are tabulated for certain selected values of the parameters. Estimation of the change point based on these two test procedures are also considered. Moreover, the epidemic change point problem is studied as an alternative model for the single change point model. A real data set with epidemic change model is analyzed by two test procedures.
Journal:Journal of Data Science
Volume 19, Issue 2 (2021): Special issue: Continued Data Science Contributions to COVID-19 Pandemic, pp. 243–252
Abstract
The swift spread of the novel coronavirus is largely attributed to its stealthy transmissions in which infected patients may be asymptomatic or exhibit only flu-like symptoms in the early stage. Undetected transmissions present a remarkable challenge for the containment of the virus and pose an appalling threat to the public. An urgent question is on testing of the coronavirus. In this paper, we evaluate the situation from the statistical viewpoint by discussing the accuracy of test procedures and stress the importance of rationally interpreting test results.
Pub. online:27 Apr 2021Type:Philosophies Of Data Science
Journal:Journal of Data Science
Volume 19, Issue 2 (2021): Special issue: Continued Data Science Contributions to COVID-19 Pandemic, pp. 219–242
Abstract
The coronavirus disease 2019 (COVID-19) pandemic caused by the novel severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has placed epidemic modeling at the center of attention of public policymaking. Predicting the severity and speed of transmission of COVID-19 is crucial to resource management and developing strategies to deal with this epidemic. Based on the available data from current and previous outbreaks, many efforts have been made to develop epidemiological models, including statistical models, computer simulations, mathematical representations of the virus and its impacts, and many more. Despite their usefulness, modeling and forecasting the spread of COVID-19 remains a challenge. In this article, we give an overview of the unique features and issues of COVID-19 data and how they impact epidemic modeling and projection. In addition, we illustrate how various models could be connected to each other. Moreover, we provide new data science perspectives on the challenges of COVID-19 forecasting, from data collection, curation, and validation to the limitations of models, as well as the uncertainty of the forecast. Finally, we discuss some data science practices that are crucial to more robust and accurate epidemic forecasting.