Journal of Data Science logo


Login Register

  1. Home
  2. Issues
  3. Volume 20, Issue 1 (2022)
  4. Computational Challenges of t and Relate ...

Journal of Data Science

Submit your article Information
  • Article info
  • Related articles
  • More
    Article info Related articles

Computational Challenges of t and Related Copulas
Volume 20, Issue 1 (2022), pp. 95–110
Erik Hintz   Marius Hofert ORCID icon link to view author Marius Hofert details   Christiane Lemieux  

Authors

 
Placeholder
https://doi.org/10.6339/22-JDS1034
Pub. online: 2 February 2022      Type: Computing In Data Science      Open accessOpen Access

Received
5 January 2022
Accepted
6 January 2022
Published
2 February 2022

Abstract

The present paper addresses computational and numerical challenges when working with t copulas and their more complicated extensions, the grouped t and skew t copulas. We demonstrate how the R package nvmix can be used to work with these copulas. In particular, we discuss (quasi-)random sampling and fitting. We highlight the difficulties arising from using more complicated models, such as the lack of availability of a joint density function or the lack of an analytical form of the marginal quantile functions, and give possible solutions along with future research ideas.

Supplementary material

 Supplementary Material
This paper can be reproduced with the R script reproduce.R and the R package nvmix, version 0.0-7.

References

 
Azzalini A (2013). The Skew-Normal and Related Families, volume 3. Cambridge University Press.
 
Barndorff-Nielsen O (1977). Exponentially decreasing distributions for the logarithm of particle size. Proceedings of the Royal Society of London. Series A, Mathematical and Physical Sciences, 353(1674): 401–419.
 
Daul S, De Giorgi E, Lindskog F, McNeil A (2003). The grouped t-copula with an application to credit risk. Available at SSRN: http://dx.doi.org/10.2139/ssrn.1358956.
 
Demarta S, McNeil A (2005). The t copula and related copulas. International Statistical Review, 73(1): 111–129.
 
Dempster A, Laird D, Rubin N (1977). Maximum likelihood from incomplete data via the EM algorithm. Journal of the Royal Statistical Society, Series B, Methodological, 39(1): 1–38.
 
Hintz E, Hofert M, Lemieux C (2020). Grouped normal variance mixtures. Risks, 8(4): 103.
 
Hintz E, Hofert M, Lemieux C (2021). Normal variance mixtures: distribution, density and parameter estimation. Computational Statistics & Data Analysis, 157C: 107175.
 
Hintz E, Hofert M, Lemieux C (2022). Multivariate normal variance mixtures in R: the R package nvmix. Journal of Statistical Software. To appear.
 
Hofert M, Hintz E, Lemieux C (2022). nvmix: multivariate normal variance mixtures. R package version 0.0-7, https://CRAN.R-project.org/package=nvmix.
 
Hofert M, Kojadinovic I, Maechler M, Yan J (2020). copula: multivariate dependence with copulas. R package version 1.0-0, https://CRAN.R-project.org/package=copula.
 
Hofert M, Lemieux C (2019). qrng: (randomized) quasi-random number generators. R package version 0.0-7, https://CRAN.R-project.org/package=qrng.
 
Hofert M, Mächler M (2011). Nested Archimedean copulas meet R: the nacopula package. Journal of Statistical Software, 39(9): 1–20.
 
Kano Y (1994). Consistency property of elliptic probability density functions. Journal of Multivariate Analysis, 51(1): 139–147.
 
Kojadinovic I, Yan J (2010). Modeling multivariate distributions with continuous margins using the copula R package. Journal of Statistical Software, 34(9): 1–20.
 
Luo X, Shevchenko P (2010). The t copula with multiple parameters of degrees of freedom: bivariate characteristics and application to risk management. Quantitative Finance, 10(9): 1039–1054.
 
Mashal R, Zeevi A (2002). Beyond correlation: extreme co-movements between financial assets. Available at SSRN: http://dx.doi.org/10.2139/ssrn.317122.
 
McNeil A, Frey R, Embrechts P (2015). Quantitative Risk Management: Concepts, Techniques and Tools. Princeton University Press.
 
Protassov R (2004). EM-based maximum likelihood parameter estimation for multivariate generalized hyperbolic distributions with fixed λ. Statistics and Computing, 14(1): 67–77.
 
Wang X, Yan J (2013). Practical notes on multivariate modeling based on elliptical copulas. Journal de la Société Française de Statistique, 154(1): 102–115.
 
Weibel M, Luethi D, Breymann W (2020). ghyp: generalized hyperbolic distributions and its special cases. R package version 1.6.1, https://CRAN.R-project.org/package=ghyp.
 
Yan J (2007). Enjoy the joy of copulas: with a package copula. Journal of Statistical Software, 21(4): 1–21.
 
Yoshiba T (2018a). Maximum likelihood estimation of skew-t copulas with its applications to stock returns. Journal of Statistical Computation and Simulation, 88(13): 2489–2506.

Related articles PDF XML
Related articles PDF XML

Copyright
2022 The Author(s). Published by the School of Statistics and the Center for Applied Statistics, Renmin University of China.
by logo by logo
Open access article under the CC BY license.

Keywords
copulas density distribution function estimation sampling

Metrics
since February 2021
1067

Article info
views

666

PDF
downloads

Export citation

Copy and paste formatted citation
Placeholder

Download citation in file


Share


RSS

Journal of data science

  • Online ISSN: 1683-8602
  • Print ISSN: 1680-743X

About

  • About journal

For contributors

  • Submit
  • OA Policy
  • Become a Peer-reviewer

Contact us

  • JDS@ruc.edu.cn
  • No. 59 Zhongguancun Street, Haidian District Beijing, 100872, P.R. China
Powered by PubliMill  •  Privacy policy