JOURNAL OF DATA SCIENCE 20 (1), 95-110 DOI: 10.6339/22-JDS1034
January 2022 Computing in Data Science

Computational Challenges of ¢+ and Related Copulas

ERIK HINTZ'* MARIUS HOFERT', AND CHRISTIANE LEMIEUX!

I Department of Statistics and Actuarial Science, University of Waterloo, 200 University Avenue West,
Waterloo, ON, N2L 3G1, Canada

Abstract

The present paper addresses computational and numerical challenges when working with ¢ cop-
ulas and their more complicated extensions, the grouped ¢ and skew ¢ copulas. We demonstrate
how the R package nvmix can be used to work with these copulas. In particular, we discuss
(quasi-)random sampling and fitting. We highlight the difficulties arising from using more com-
plicated models, such as the lack of availability of a joint density function or the lack of an
analytical form of the marginal quantile functions, and give possible solutions along with future
research ideas.

Keywords copulas; density; distribution function; estimation; sampling

1 Introduction

Copulas, such as the ¢ copula, are widely used for modelling dependence in risk management
and other disciplines. In contrast to the Gaussian copula, the ¢ copula allows for modeling tail
dependence. Denote by ¢, the distribution function of a univariate ¢ distribution with v degrees-
of-freedom. The ¢ copula is the implicit copula of a multivariate ¢ distributed random vector,
X ~ t;(v, P) with stochastic representation

X< JVWAZ,

where W ~ IG(v/2, v/2) is independent of Z ~ Ny (0, I;) and AAT = P for a correlation matrix
P. The random vector U = (t,(X}), ..., 1 (Xy)) then follows the ¢t copula, in short U ~ Cf),P.
If P = I, all lower-dimensional margins of U follow the same distribution. To overcome this
limitation, Daul et al. (2003) proposed grouped ¢ copulas, where different groups of margins
are allowed to have different degrees of freedom. More precisely, a random vector X’ follows a
grouped t distribution, if it has stochastic representation

X' = diag(vVW)AZ,

where (Wi, ..., W) is comonotone with W; ~ fy;; components with the same degrees-of-freedom
parameter are considered to be in the same group, hence the name. The random vector U’ =
(1, (X1), ..., t,,(Xq)) then follows the groupedt copula,in short U’ ~ Cffp, wherev = (v, ..., vg).
Moving from a ¢ to a grouped t copula provides more flexibility, but also poses significant
computational challenges, since not even the density of a grouped ¢ distribution is available
analytically.

*Corresponding author. Email: erik.hintzQuwaterloo.ca.

© 2022 The Author(s). Published by the School of Statistics and the Center for Applied Statistics, Renmin
University of China. Open access article under the CC BY license.
Received January 5, 2022; Accepted January 6, 2022

mailto:erik.hintz@uwaterloo.ca
https://creativecommons.org/licenses/by/4.0/

[

N

96 Hintz, E. et al.

A possible limitation of t and grouped ¢ copulas is their radial symmetry, which means that
both joint tails are equal; this falsely implies, for example, that joint large losses are as likely as
joint large gains when these copulas are used for modeling financial (log-)returns X. A remedy
is the skew ¢ copula; see, for instance, (McNeil et al., 2015, Chapter 7). A d-dimensional random
vector X” has a d-dimensional skew t distribution, denoted by X” ~ st,(v, w, P, p), if it satisfies
the stochastic representation

X'"=p+Wy+VWAZ, (1)

where y € RY denotes the skewness parameter vector and Z ~ Ny(0, 1) is independent of W ~
IG(v/2, v/2); this is the multivariate version of the skew ¢ distribution proposed by Barndorff-
Nielsen (1977). We remark that different definitions of the skew ¢ distribution can be found in
the literature; see for instance Azzalini (2013) for an alternative model referred to as a skew ¢
distribution. Unlike the grouped ¢, the skew ¢ distribution does have a closed form expression
for its density, see (McNeil et al., 2015, p. 191). If, for y € R, st,, denotes the distribution
function of a univariate skew ¢ distribution, the random vector U” = (st ,,(X{), ..., st,, (X))
follows the skew t copula, U" ~ C; ” . The major computational challenge when moving from
a t copula to a skew ¢ copula is the fact that a fast approximation of the distribution function
st,, is not available anymore and must be estimated. Even worse, the density of a skew ¢ copula
involves the quantile functions st~ yio which must be computed numerically.

The present paper highlights these numerical challenges and demonstrates how the R pack-
age numizr can be used to work with ¢, grouped ¢ and skew ¢ copulas. Besides showing how
numix can be used to generate pseudo- and quasi-random variates from these copulas and what
numerical and computational challenges arise by working with these more complicated models,
we demonstrate and compare various fitting procedures for these copulas; see Hofert et al. (2022)
and Hintz et al. (2022).

2 Sampling the ¢, Grouped t and Skew ¢ Copula

Our R package nvmiz provides functions to sample from the ¢, the grouped ¢ and the skew ¢ copula
based on their stochastic representations. We focus on the more interesting cases of the grouped
t and skew ¢ copula. In order to generate the copula samples, we first sample from the grouped
t or skew t distribution and then apply the corresponding probability integral transformation.
In the case of the r and grouped ¢ distribution, the margins are univariate ¢, so we use the R
function pt (). The skew ¢ case is more complicated because it involves the approximation of
the distribution function of the univariate skew ¢ distribution, a point we address in the second
subsection.

2.1 Sampling the Grouped ¢ Copula with Pseudo- and Quasi-Random Num-
bers

Grouped ¢t copulas can be easily sampled from using the function rgStudentcopula():
library(nvmix) # load the package
str(rgStudentcopula)

function (n, groupings = 1:d, df, scale = diag(2), factor = NULL,
method = c("PRNG", "sobol", "ghalton"), skip = 0)

(S I R

Computational Challenges of t and Related Copulas 97

The argument groupings is a vector of length d so that groupings[j] gives the group of
the jth component, while the vector df has length equal to the number of groups, that is, df [k]
contains the degrees-of-freedom for the kth group. For efficiency, rgStudentcopula() also allows
to provide the argument factor which is a lower triangular matrix A so that AAT = P; if not
supplied, it is computed via chol (). The argument method specifies the type of uniform numbers
used for sampling from the copula; if method = "PRNG" we obtain classical pseudo-random sam-
ples, while method = "sobol" and method = "ghalton" use the Sobol’ or generalized Halton
sequence of the R package grng of Hofert and Lemieux (2019).

Consider, for instance, a 4-dimensional grouped ¢ copula, where (marginally) (U, Uy) ~
C£1,0.7 and (Us, Uy) ~ Clt)z,().7’ with vi = 0.5 and v, = 25 chosen far apart to make the ef-
fect of different groups visible. This model can be easily sampled from using the function
rgStudentcopula():

library(copula) # for pairs2()

set.seed(1l) # set a seed for reproducibility

d <- 4 # dimension

groupings <- c(1, 1, 2, 2) # (U1, U2) and (U3, U4) are each in the same group
df <- c(0.5, 25) # degrees-of-freedom for groups 1 and 2

rho <- 0.7 # off-diagonal entry of P

P <- matrix(rho, ncol = d, nrow = d)

diag(P) <- 1 # P is now a correlation matriz

n <- 1le3 # sample size

U <- rgStudentcopula(n, groupings = groupings, df = df, scale = P)
pairs2(U, pch = ".")

As an application, consider the problem of evaluating this copula at u = (u, ..., u) for some
u € (0,1), ie., we estimate C5 p(u, ..., u) =PU; <u,...,Us <u).

We first use pseudo-random numbers and define a function returning the Monte Carlo
estimate along with an estimate of the absolute error (with confidence level at least 99.99%).

MC_est <- function(n, u) {
le.u <- apply(rgStudentcopula(n, groupings = groupings, df = df,
scale = P) <= u, 1, all)
c(est = mean(le.u), abs.err = 3.5 * sqrt(var(le.u)/n))

Next, we replace pseudo-random numbers by a randomized Sobol’ sequence, resulting in a
randomized quasi-Monte Carlo (RQMC) method. Because quasi-random numbers are correlated,
we use B = 15 independent repetitions to compute the estimate and variance.

RQMC_est <- function(n, u, B = 15) {
le.u <- sapply(1:B, function(i) mean(apply(rgStudentcopula(n, df = df,
groupings = groupings, scale = P, method = "sobol") <= u, 1, all)))
c(est = mean(le.u), abs.err = 3.5 * sqrt(var(le.u)/B))

For a fair comparison, we must match the total number of function evaluations, as is done
in the following example.

u <- 0.5 # evaluation point

n <- 2710 # sample size

B <- 15 # number of replications

set.seed(2) # for reproducibility

t.MC <- system.time(MC.out <- MC_est(B * n, u = u))

6

8

98 Hintz, E. et al.

Figure 1: Pairs plot of a grouped ¢ copula sample.

t.RQMC <- system.time(RQMC.out <- RQMC_est(n, u = u, B = B))
matrix(c(MC.out, RQMC.out), ncol = 2, dimnames = list(c("est", "abs.err"),
C("MC", |IRQMC|I)))

Mc R@MC
est 0.26861979 0.269075521
abs.err 0.01251778 0.006283564

By taking the quotient of the squared absolute errors, we see that using a Sobol” sequence
reduces the variance by a factor of 4; we chose to display absolute errors here to be consistent
with the example below. We see that with the function rgStudentcopula(), replacing pseudo-
by quasi-random numbers can be easily accomplished.

The same probability can be estimated efficiently using a reformulation of the problem
(reducing the dimension of the problem by 1), variable reordering (reducing the variance) and
RQMC; see Hintz et al. (2020) and Hintz et al. (2021) for details. This is implemented in the
function pgStudentcopula(), which automatically samples until the default absolute tolerance

Computational Challenges of t and Related Copulas 99

of 1073 or a user-provided tolerance is reached; the latter can be specified in the control
argument, see 7get_set_param(). The full code is available in the source code of the package
nvmiz. This is particularly convenient, as the user does not need to decide in advance how large
the sample size needs to be.

t.pgstcop <- system.time(p <- pgStudentcopula(rep(u, d), groupings = groupings,
df = df, scale = P))

3 print (p)

[SL I OV R R

[1] 0.2706164

attr(, "abs. error')
[1] 6.331122e-05
attr(, "rel. error")
[1] 0.0002339519
attr(, "numiter")

[1] 1

Not only is pgStudentcopula() more accurate, it is also faster:

c("MC" = t.MC[3], "RQMC" = t.RQMC[3], "pgStudentcop" = t.pgstcopl[3])

MC.elapsed R@MC.elapsed pgStudentcop.elapsed
0.064 0.075 0.016

Next, rather than estimating the copula at a single value of u, we construct a plot of the
copula diagonal for several u (chosen small to highlight the challenges when estimating small
probabilities). We omit code for the more involved plots from now on.

u <- seq(from = 0.003, to = 0.2, length.out = 27)
MC.out <- sapply(u, function(u.) MC_est(B * n, u = u.)[1])
RQMC.out <- sapply(u, function(u.) RQMC_est(n, u = u., B = B)[1])
pgstcop.out <- pgStudentcopula(matrix(u, ncol = d, nrow = 27),
groupings = groupings, df = df, scale = P)

It is evident from Figure 2 that pgStudentcopula() yields the curve, followed by RQMC_est ()
and then MC_est ().

2.2 Sampling from the Skew-r Copula and the Effect of Estimated Margins

Moving from a (grouped) ¢ copula to a skew ¢ copula means moving from a model where the
margins are readily available (via pt () and qt ()) to a model where all marginal distribution and
quantile functions need to be estimated. Recall that if X = (X4, ..., X;) follows the stochastic
representation (1), then U = (st,,,(X1), ..., st,,,(Xq)) is distributed according to the skew-t
copula. Computation of st,,. () requires numerical integration; Yoshiba (2018a) suggest using
the R function integrate(), as is done in the R package ghyp, see Weibel et al. (2020). Note
that sampling n d-dimensional copula realizations requires to approximate nd integrals.

A popular method to avoid using the correct marginal distribution functions is to replace

them by their empirical distribution functions. That is, if X1, ..., X, B sty(v, v, P), we compute

R 1 n
Fi)=-—7 > Lix<x

i=1

for j =1,...,d, and compute a pseudo-copula sample via (ﬁl Xi), ..., ﬁd(Xid)) fori =1,...,n.

100 Hintz, E. et al.

_| —— pgStudentcopula()
—— RQMC.est()
$ | MC.est()
(0]
N
[se}
o
-
—_ Ye]
=
3-: _|
S 8
é _|
<
o
T -
N
w0
o
b T T T T T
w0

0.00 0.05 0.10 0.15 0.20

Figure 2: Estimating the copula diagonal of a grouped ¢ copula via MC, RQMC and via
pgStudentcopula().

< o |
[o0) [ce)
o o
© ©
o o 7
=) =)
< <
o o 7
w
w
S 2 S - 9
= =
1 I
=) 2 o 2
S 3 o 7 2
| T T T T T | T T T T T
0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0
Uy U,

Figure 3: Estimating the copula diagonal of a grouped ¢ copula via MC, RQMC and via
pgStudentcopula().

The function rskewtcopula() of the R package nvmizr provides both of these methods,
which can be chosen by setting the argument pseudo = TRUE or pseudo = FALSE, respectively.
We use both methods in the following code and compare their run times. Figure 3 shows the
first 2 margins of the aforementioned samples.

1 n <= 1000; d <- 10; rho <- 0.5; gamma <- rep(l, d); df <- 7
2 scale <- matrix(rho, ncol = d, nrow = d); diag(scale) <- 1
3 set.seed(1)

4

15

Computational Challenges of t and Related Copulas 101

system. time (samplecop.pobs <- rskewtcopula(n, scale = scale, gamma = gamma,
df = df, pseudo = TRUE))

user system elapsed
0.003 0.000 0.004

set.seed(1)
system.time (samplecop.pskewt <- rskewtcopula(n, scale = scale, gamma = gamma,
df = df, pseudo = FALSE))

user system elapsed
2.608 0.042 2.871

Using pseudo = TRUE typically works well for large n, as F (x) converges to F;(x) almost
surely for n — oo. For small sample sizes, however, inference based on pseudo-observations can
lead to flawed results. We illustrate this by estimating the rather simple probability P(U; >
09,...,U; >0.9) for d = 10.

Compute estimates and record run—time when estimating the probability
based on pseudo = TRUE and pseudo = FALSE
ns <- c(50, 100, 250, 500, 750, 1000, 2000, 3000, 4000, 5000) # sample sizes
res <- array(NA, dim = c(length(ns), 2, 2),
dimnames = list(n = ns, pobs = c(TRUE, FALSE), c("est", "CPU")))
for(i in seq_along(ns)) {
set.seed(12) # same seed for all sample sizes
res[i,1,2] <- system.time(res[i,1,1] <- mean(apply(
rskewtcopula(ns[i], scale = scale, gamma = gamma, df = df, pseudo = TRUE),
1, function(i) all(i > 0.9))))[3]
set.seed(12) # same random numbers for ’pseudo = TRUE’ and ’pseudo = FALSE’
res[i,2,2] <- system.time(res[i,2,1] <- mean(apply(
rskewtcopula(ns[i], scale = scale, gamma = gamma, df = df, pseudo = FALSE),
1, function(i) all(i > 0.9))))[3]

Figure 4 shows the estimates obtained (left) and the run time needed (right), both with a
logarithmic y-axis. Clearly, a relatively large sample size is needed so that both methods give
approximately the same result. In simulation studies like the one below, this is not restrictive as
we can very quickly sample a large number of pseudo-observations. Furthermore, even when the
sample size n is small, one can sample n’ > n observations, compute an estimate of the empirical
distribution function and return n of them. Nevertheless, this example highlights that care must
be taken when working with a given dataset with relatively small size.

3 Estimating the ¢, Grouped ¢ and Skew ¢ Copula

In this section, we demonstrate how the R package nvmix can be used to fit the ¢, grouped ¢ and
skew t copula to data, hereby highlighting the computational challenges arising from moving
from the classical ¢ copula to a more complicated model.

3.1 Parameter Estimation for the r Copula

Fitting the ¢ copula to data by means of maximum likelihood (ML) estimation requires opti-
mization of the (d(d — 1)/2 4+ 1)-dimensional copula log-likelihood function. This optimization

102 Hintz, E. et al.

w
N —
o o
o ?
(]
w0
o
N
N
IS _
e
Z o 8
3 S A >
g s 5
a S
T -
['e)
o
S _
S 3
| —
—— pobs = TRUE 2 —— pobs = TRUE
—— pobs = FALSE —— pobs = FALSE
T T T T T T T T T T T T
0 1000 2000 3000 4000 5000 0 1000 2000 3000 4000 5000
n n

Figure 4: Estimated probabilities (left) and run times needed (right) when estimating the survival
copula based on (pseudo-)observations.

problem has non-linear constraints (as positive-semidefiniteness of P must be ensured), making
this problem particularly hard. The R package copula (see Yan (2007), Kojadinovic and Yan
(2010), Hofert and Méchler (2011) and Hofert et al. (2020)) currently uses such ML procedure
via the function fitCopula(), which searches for the optimum in the space of all square matrices
and rejects those that are not positive definite.

Yoshiba (2018a) instead represent the Cholesky factor L of P (a lower triangular matrix
L such that LLT = P) using angles 6;; € [0,) for j = 1,...,i —2 and 6;,_; € [0, 27) for
i =2,...,d; see (Yoshiba, 2018a, Equation 12) for details. The benefit of this transformation
is that one can proceed by maximizing the copula log-likelihood without imposing non-linear
constraints (or rejecting non-positive definite matrices). We refer to this method as “Full-MLE”.
Note that the optimization problem still has O(d?) parameters, making this procedure ill-suited
for higher dimensions d. In order to reduce the dimensionality of the optimization problem, note
that if the degrees-of-freedom v is known, estimating P is equivalent to estimating the scale
matrix of a multivariate ¢ distribution, which can be done efficiently using the EM algorithm;
see Dempster et al. (1977), Protassov (2004), (McNeil et al., 2015, Chapter 15.1). This motivates
maximizing the profile log-likelihood, given by

log L*(v; Uy, ..., U,) =log L(v, P(v); Uy, ..., U,),

where 13(1)) is the ML estimator of P based on the samples X;, i = 1,...,n, with X; =
(tv_l(Ui]), el tv_l(U,»d)). Note that log L* is only a function of v and thus univariate. We re-
fer to this method as “EM-MLE".

Another popular estimation method for ¢ copulas explained in (Mashal and Zeevi, 2002,
Appendix C) (see also Demarta and McNeil (2005)) is to empirically estimate all pairwise
Kendall’s tau p;, 1 <i < j <d, and then map these estimates to a correlation matrix P using
P;j = sin(rp;;/2). With an estimate of P at hand, the degrees-of-freedom v can be estimated by
optimizing a univariate log-likelihood function. We refer to this method as “Moment-MLE”.

10

11

12

14

Computational Challenges of t and Related Copulas 103

The function fitStudentcopula() from the R package nvmix provides all previously men-
tioned estimation methods:

str(fitStudentcopula)

function (u, fit.method = c("Moment-MLE", "EM-MLE", "Full-MLE"), df.init = NULL,
df.bounds = ¢(0.1, 30), control = list(), verbose = TRUE)

One can supply initial estimates for the degrees-of-freedom v and bounds for it via the ar-
guments df . init and df .bounds. This function returns an object of class fitgStudentcopula,
for which the print () method can be used to output all necessary information, as demonstrated
in the following example:

n <- 500; d <- 7; rho <- 0.5; df <- 3.5

scale <- matrix(rho, ncol = d, nrow = d); diag(scale) <- 1
set.seed(123)

sample <- rStudentcopula(n, df = df, scale = scale)
fitStudentcopula(sample)

Call: fitStudentcopula(u = sample)

Input data: 500 7-dimensional observations.

Fitting a t copula with unknown scale matrixz and method Moment-MLE
Log-likelihood at reported parameter estimates: 967.763800
Estimated degrees-of-freedom

[1] 3.512113

Estimated ’scale’ matriz:

[, [,21 [,3] [,41 [,5] [,6] [,7]

[1,] 1.0000 0.4988 0.4328 0.4663 0.5029 0.4534 0.4590

[2,] 0.4988 1.0000 0.4875 0.5192 0.5397 0.5529 0.5021

[3,] 0.4328 0.4875 1.0000 0.4720 0.5355 0.5499 0.5225

[4,] 0.4663 0.5192 0.4720 1.0000 0.5560 0.4958 0.4979

[5,] 0.5029 0.5397 0.5355 0.5560 1.0000 0.5763 0.5000

[6,] 0.4534 0.5529 0.5499 0.4958 0.5763 1.0000 0.5027

[7,] 0.4590 0.5021 0.5225 0.4979 0.5000 0.5027 1.0000

By default, the function fitStudentcopula() uses the “Moment-MLE” method, which is
the fastest and typically most reliable. In the following, we perform a simulation study to inves-
tigate the performance of the three methods. For comparison, we also include the fitCopula()
function of the R package copula as a fourth method.

set.seed (1)
methods <- c("Moment-MLE", "EM-MLE", "Full-MLE", "Full-MLE (’copula’)")
reps <- 50 # number of replications for each method
res <- array(, dim = c(length(methods), reps, 4),
dimnames = list(method = methods, rep = 1l:reps,
c("loglik", "cpu", "df", "rhol2")))
for(i in 1l:reps) {
U <- rStudentcopula(n, df = df, scale = scale) # sample
t.mm <- system.time(fit.mm <- fitStudentcopula(U, fit.method = "Moment-MLE")) [1]
t.em <- system.time(fit.em <- fitStudentcopula(U, fit.method = "EM-MLE")) [1]
t.fl <- system.time(fit.fl <- fitStudentcopula(U, fit.method = "Full-MLE")) [1]
t.fl.cop <- system.time(fit.fl.cop <- fitCopula(
tCopula(dim = d, dispstr = "un"), U, method = "ml", estimate.variance = FALSE,
start = c(fit.mm$scale[upper.tri(fit.mm$scale)], 5))) [1]

104 Hintz, E. et al.

08
0.10
!
15
!

0.6
0.08
1

%
%
ﬂ}

04
1
[p12=p1al
0.06
1
CPU time

0.04
1

0.2

0.02
1

0.0
0.00
L

T T T T T T T T T T T T
Moment-MLE EM-MLE Full-MLE Full-MLE (‘copula’) Moment-MLE EM-MLE Full-MLE Full-MLE (‘copula’) Moment-MLE EM-MLE Full-MLE Full-MLE (‘copula’)

Figure 5: Boxplots of absolute errors for the degrees-of-freedom (left) and correlation parameter
(middle) and of the run times (right) for a 7-dimensional ¢ copula.

res[,i,"loglik"] <- c(fit.mm$max.11l, fit.em$max.1ll, fit.fl$max.1ll,
fit.fl.cop@loglik)
res[,i,"cpu"] <- c(t.mm, t.em, t.fl, t.fl.cop)
res[,i,"df"] <- c(fit.mm$df, fit.em$df, fit.fl$df,
fit.fl.cop@estimate[d*(d-1)/2+1])
res[,i,"rhol12"] <- c(fit.mm$scale[1, 2], fit.em$scale[1l, 2], fit.fl$scalell, 2],
fit.fl.cop@estimate[1])

Figure 5 confirms that all methods give reasonable estimates and that all methods per-
form similarly but differ significantly in run-time. Furthermore, the function fitCopula()
from copula is substantially slower than the “Full-MLE” method implemented in the function
fitStudentcopula(), while giving almost identical results. The “EM-MLE” method is not much
slower than “Moment-MLE”.

3.2 Parameter Estimation for the Grouped ¢ Copula

Moving from a ¢ copula to a grouped ¢ copula means moving from a model with known density
to a model where the density needs to be estimated.
Daul et al. (2003) consider a grouped ¢ copula where each group has size at least 2, so that
all subgroups are t copulas. The authors suggest to estimate the degrees-of-freedom separately
in each group. Luo and Shevchenko (2010) consider the grouped ¢ copula with d groups (each
group belongs to its own group of size 1) and suggest to jointly estimate the d degrees-of-
freedom parameters by maximizing the copula log-likelihood. In both references, the matrix
P is estimated by estimating pairwise Kendall’s tau and using the approximate identity p;; ~
2arcsin(p;;)/m fori # j. Hintz et al. (2020) provide an efficient algorithm to compute the grouped
t copula density, which involves numerical integration via RQMC. This is a key ingredient in
(Hintz et al., 2020, Algorithm 2), implemented in the R function fitgStudentcopula(), for
estimating copula parameters, which, given (pseudo-)observations Uy, ..., U,, works as follows:
1. Estimate all pairwise Kendall’s tau and use the approximate identity p;; ~ 2arcsin(p;;)/7 to
form a correlation matrix P.

2. Find initial parameters Dy in all subgroups k with d; > 2 by maximizing the marginal ¢
copula log-likelihood. For groups with d; = 1, choose the initial estimate from prior/expert
experience.

Computational Challenges of t and Related Copulas 105

3. With initial estimates U¢, k = 1, ..., S, where S is the number of groups, maximize the (joint)
grouped t copula log-likelihood over (vy, ..., vg).

Daul et al. (2003) stop after the second step, which means that their procedure does not
account for the dependence between the groups. We demonstrate this in the following simulation
using the function fitgStudentcopula() where we simulate, for each sample size, 10 realizations
of the estimators in Daul et al. (2003) (initial estimates) and Hintz et al. (2020) (MLEs). Note
that, in order to control for the effect of an estimated scale matrix, we suppress its estimation by
supplying it as argument scale. We set verbose = FALSE to suppress warnings, a point which
we come back to below.

ns <- c(50, 250, 500, 750, 1000) # sample sizes
reps <- 10 # number of repetitions for each sample size
d <- 4 # dimension
df <- c(3, 8) # degrees-of-freedom for each group
grp <- rep(1:2, each = 2) # 2 components in each group
set.seed (1)
P <- cov2cor(rWishart(1l, d, diag(d))[,,1]) # same known scale for all reps
fit.res <- array(, dim = c(length(ns), reps, length(df), 2),
dimnames = list(n = ns, rep = l:reps, df = c("dfi", "df2"),
est = c("init", "MLE")))
for(j in 1l:reps) {
set.seed(j)
sample <- rgStudentcopula(max(ns), groupings = groupings, scale = P, df = df)
for(i in seq_along(ns)){
fit <- fitgStudentcopula(u = sample[1:ns[i],], groupings = grp,
scale = P, verbose = FALSE)
fit.res[i,j,,"init"] <- fit$df.init
fit.res[i,j,,"MLE"] <- fit$df
}

As can be seen from Figure 6, maximization of the copula log-likelihood jointly over all
degrees-of-freedom parameters improves the precision. For instance, even when n = 1000, the
initial estimates for df2 are much more fluctuating than the MLEs for df£2. The price to pay is a
substantially longer run time, as the underlying procedure optimizes an estimated log-likelihood.

Optimizing an estimated log-likelihood poses another problem: In contrast to the true log-
likelihood function, an estimate thereof may be bumpy, non-differentiable and multimodal,
so that optimizers may not converge quickly. In order to limit the run time, the function
fitgStudentcopula() uses at most 100 function calls. Via the argument control (see
?7get_set_param()), we can change this default by supplying a list control.optim which is
passed to the underlying optim() call. We demonstrate this in a 6-dimensional example with a
randomly sampled correlation matrix.

set.seed(42)
n <- 100; d <- 6; groupings <- rep(1:3, each = 2); df <- c(1, 4, 8)

3 rho <- runif(1, -1, 1)

S

P <- matrix(rho, ncol = d, nrow = d); diag(P) <- 1
U <- rgStudentcopula(n, groupings = groupings, df = df, scale = P)
(fit <- fitgStudentcopula(u = U, groupings = groupings))

Warning in fitgStudentcopula(u = U, groupings = groupings): Mazimum number
of iterations exhausted in optim(); consider increasing ’optim.mazit’ in the

106 Hintz, E. et al.

84 A o Estimated df1 &4 o Estimated df1
A Estimated df2 A Estimated df2
— True df A — True df
9 - —— True df2 9 True df2

c c
ey ey
o _| Q o _| [$]
Q@ N 8 N 8
E 5, 5
» » 1) »
g w | A A_E s 244 S
= A A B kS
= A & o ole g
o _| o o _| o
~ g o ; ~ @ § § ;
=% gt A é Ay
© % é 3 0w — g b
o 193 o)
Q Q
> >
) < [
(o] (o]

50 250 500 750 1000 50 250 500 750 1000

n n

Figure 6: Initial estimates (left) and MLEs (right) for the degrees-of-freedom parameters of a
grouped t copula with 2 groups.

control argument.

Call: fitgStudentcopula(u = U, groupings = groupings)

Input data: 100 6-dimensional observations.

Fitting a grouped t copula with unknown scale matriz and 3 group(s) and group ...
Group

123

222

Approximated log-likelihood at reported parameter estimates: 378.901900
Fitting method used: joint-MLE

Estimated degrees-of-freedom for each group

[1] 1.187898 3.632169 6.416981

Estimated ’scale’ matriz:

[,11 [,21 [,3] [,41 [,5] [,6]
[1,] 1.0000 0.8433 0.7149 0.8000 0.6892 0.7934
[2,] 0.8433 1.0000 0.7961 0.8273 0.7648 0.8704
[3,] 0.7149 0.7961 1.0000 0.7453 0.7145 0.8686
[4,] 0.8000 0.8273 0.7453 1.0000 0.7950 0.7769
[5,] 0.6892 0.7648 0.7145 0.7950 1.0000 0.7528
[6,] 0.7934 0.8704 0.8686 0.7769 0.7528 1.0000

We can run fitgStudentcopula() again with a larger maximum number of function evalu-
ations in the underlying optim() call, in which case the warning does not appear. The estimates
do not differ significantly from the previous ones in this case.

(fit <- fitgStudentcopula(u = U, groupings = groupings,
control = list(control.optim = list(maxit = 200))))

Call: fitgStudentcopula(u = U, groupings = groupings, control = list(...)

Input data: 100 6-dimenstional observations.

Fitting a grouped t copula with unknown scale matriz and 3 group(s) and group ...
Group

Computational Challenges of t and Related Copulas 107

123

222

Approximated log-likelihood at reported parameter estimates: 378.840400
Fitting method used: joint-MLE

Estimated degrees-of-freedom for each group

[1] 1.185490 3.627914 6.408446

Estimated ’scale’ matriz:

[,11 [,21 [,3] [,4] [,5] [,6]

[1,] 1.0000 0.8433 0.7149 0.8000 0.6892 0.7934
[2,] 0.8433 1.0000 0.7961 0.8273 0.7648 0.8704
[3,] 0.7149 0.7961 1.0000 0.7453 0.7145 0.8686
[4,] 0.8000 0.8273 0.7453 1.0000 0.7950 0.7769
[5,] 0.6892 0.7648 0.7145 0.7950 1.0000 0.7528
[6,] 0.7934 0.8704 0.8686 0.7769 0.7528 1.0000

3.3 Parameter Estimation for the Skew r Copula

Parameter estimation of the skew ¢ copula was addressed in Yoshiba (2018a). The authors sug-
gest a “Full-MLE” method which optimizes the log-likelihood over the Cholesky factor, skew-
ness parameters and degrees-of-freedom jointly. They present two methods for estimating the
marginal quantile functions st~!: One works by constructing a spline function for st and solving,
for p € (0, 1), the equation st(x) — p = 0 for x numerically via uniroot (); this could be made
faster by constructing a spline to approximate the quantile function by merely swapping the
arguments, a point we will investigate in future research. The other method works by sampling
from the univariate skew ¢, applying the distribution function st (estimated via integrate())
and then interpolating; see Yoshiba (2018a) for details. This method is implemented in the R
function fitskewtcopula() based on code from the supplement provided by Yoshiba (2018a).
In order to reduce the dimension of the optimization problem and to improve the accuracy of
the estimated matrix P, we also implemented the “EM-MLE” method for this model, which
follows the same logic as the “EM-MLE” method in the ¢ case discussed earlier.

Parameter estimation of the skew ¢ copula is the most challenging problem discussed in
this paper: The log-likelihood is rather flat over a range of parameters (v,), making numerical
maximization even in small dimensions difficult. Furthermore, for each log-likelihood evaluation,
nd-many quantiles need to be estimated, making this procedure not only slow, but also causing
numerical problems as we optimize an estimated, possibly bumpy, log-likelihood function.

To illustrate the flatness of the profile log-likelihood, we plot, for fixed P, the profile log-
likelihood of 3-dimensional, equi-skewed sample as a function of the degrees-of-freedom param-
eter v and the skewness y in Figure 7.

set.seed(12)
n <- 1000; 4 <- 3; rho <- 0.5; gamma <- rep(0.8, d); df <- 10
scale <- matrix(rho, ncol = d, nrow = d); diag(scale) <- 1
U <- rskewtcopula(n, scale = scale, gamma = gamma, df = df, pseudo = FALSE)
Define log-likelthood function with known ’scale’
loglik <- function(par) sum(dskewtcopula(
U, scale = scale, df = par[1], gamma = rep(par([2], d), log = TRUE))
Evaluate ’loglik’ on a grid and plot
n.grid <- 19
df_ <- seq(5, 11, length.out
gam_ <- seq(0, 2, length.out

n.grid)
n.grid)

108 Hintz, E. et al.

20!!!!5!!;/////
’/’,/,/,,,,,—-""""""""’“—‘——‘——‘————_——_——-___ L 1000
//,
-
i

—T 1000

- —2000
- -3000

0.5 4

-4000

0.0 4

T T T T T T T —5000

Figure 7: Profile log-likelihood for a trivariate skew ¢ copula sample for fixed P.

grid <- expand.grid("nu" = df_, "gamma" = gam_)
lik <- apply(grid, 1, loglik)

val.lik <- cbind(grid, "loglik" = 1lik)
contourplot2(val.lik)

Next, we illustrate the difficulties arising when fitting skew ¢ copulas by using “EM-MLE”
and “Full-MLE” combined with two different optimization methods, L-BFGS-B and Nelder-
Mead, and print the results below. All methods below use as a starting value for P the correlation
matrix resulting from estimating all pairwise Kendall’s tau and using the approximate identity
,oifj A 2arcsin(p;;)/m as in the grouped case. Unless provided via the arguments df.init and
gamma.init, the starting values for the degrees-of-freedom v and y are the midpoints of the
intervals described by df .bounds and gamma.bounds, respectively.

t.em <- system.time(fit.em <- nvmix:::fitskewtcopula(
U, fit.method = "EM-MLE", df.bounds = c(5, 15), gamma.bounds = c(0, 2))) [3]
t.fl <- system.time(fit.fl<- nvmix:::fitskewtcopula(
U, fit.method = "Full-MLE", df.bounds = c(5, 15), gamma.bounds = c(0, 2))) [3]
t.em.neld <- system.time(fit.em.neld <- nvmix:::fitskewtcopula(
U, fit.method = "EM-MLE", df.bounds = c(5, 15), gamma.bounds = c(0, 2),
optim.method = "Nelder-Mead")) [3]
t.fl.neld <- system.time(fit.fl.neld<- nvmix:::fitskewtcopula(
U, fit.method = "Full-MLE", df.bounds = c(5, 15), gamma.bounds = c(0, 2),
optim.method = "Nelder-Mead")) [3]

EM (L-BFGS-B) Full (L-BFGS-B) EM (Nelder-Mead) Full (Nelder-Mead)
mazx.ll 59/ .18325808 3.558158e+13 59/4.18399711 3.640864e+02
df 5.00000000 1.161977e+01 5.00000003 5.000001e+00
gamma 0.02091612 6.202521e-01 0.02161272 1.079474e-06
rho[1,2] 0.54504929 -9.883032e-01 0.54510074 4.872877e-01
rhol1,3] 0.58314636 -1.968595e-01 0.58320572 4.564044e-01
rho[2,3] 0.54960991 4.503924e-02 0.54964702 5.544778e-01
CPU 27.87400000 5.966400e+01 19.69400000 2.339300e+01

Computational Challenges of t and Related Copulas 109

The results indicate that “EM-MLE” is faster than “Full-MLE”, but none of the methods
perform satisfactorily: The degrees-of-freedom in “EM-MLE” are exactly the left boundary point
of the argument df.bounds and gamma is largely underestimated. “Full-MLE” combined with
the optimizer “L-BFGS-B” gives poor results (the log-likelihood in the order of 10" indicates
numerical problems), while the optimizer “Nelder-Mead” produces, similarly to the EM meth-
ods, a degrees-of-freedom estimate at the boundary and y ~ 0. In this case, the “EM-MLE”
method gives a larger log-likelihood than “Full-MLE”. In contrast to “Full-MLE”, changing the
underlying optimizer does not substantially change the results of “EM-MLE”.

This particular example shall highlight the complications when fitting skew ¢ copulas to
data. The function fitskewtcopula() can be found, for experimental purposes, in the source
code of the R package numiz, but it is not exported. We plan to explore how such computational
challenges can be addressed in future research.

4 Conclusion

While widely used (thanks to its tractability), the 7 copula imposes radial symmetry on the
model that may not be justified in practice. More complicated, non-elliptical models such as
the grouped ¢ and skew ¢ copulas have been proposed. The price to pay for moving to a more
evolved model are substantial from a computational point of view, which we demonstrated in
this paper. While in the case of the grouped ¢ copula we were able to provide algorithms and
software for parameter estimation, the skew ¢ case is even more complicated due to the lack of an
available marginal distribution and its quantile function. A possible avenue for future research
would be to develop faster integration routines to compute the distribution function based on
the stochastic representation and using properties of the model rather than relying on the R
function integrate(). Furthermore, the notion of marginal consistency has only been defined
for elliptical distributions; see Kano (1994) and Wang and Yan (2013). It would be interesting
to study how this notion can be extended to non-elliptical distributions, for instance, using the
notion of grouped elliptical distributions defined in Hintz et al. (2020). Finally, a non trivial
task when using the grouped ¢ copula is to decide which components belong to the same group,
unless there is a natural grouping given, for instance, by industry sectors. It would be interesting
to develop fast clustering algorithms to assist with this task that work well in high dimensions.

Supplementary Material

This paper can be reproduced with the R script reproduce.R and the R package nvmiz, version
0.0-7.

Acknowledgment

We would like to thank Editor Jun Yan for valuable feedback on this work.

References

Azzalini A (2013). The Skew-Normal and Related Families, volume 3. Cambridge University
Press.

110 Hintz, E. et al.

Barndorff-Nielsen O (1977). Exponentially decreasing distributions for the logarithm of parti-
cle size. Proceedings of the Royal Society of London. Series A, Mathematical and Physical
Sciences, 353(1674): 401-419.

Daul S, De Giorgi E, Lindskog F, McNeil A (2003). The grouped z-copula with an application
to credit risk. Available at SSRN: http://dx.doi.org/10.2139 /ssrn.1358956.

Demarta S, McNeil A (2005). The ¢ copula and related copulas. International Statistical Review,
73(1): 111-129.

Dempster A, Laird D, Rubin N (1977). Maximum likelihood from incomplete data via the EM
algorithm. Journal of the Royal Statistical Society, Series B, Methodological, 39(1): 1-38.

Hintz E, Hofert M, Lemieux C (2020). Grouped normal variance mixtures. Risks, 8(4): 103.

Hintz E, Hofert M, Lemieux C (2021). Normal variance mixtures: distribution, density and
parameter estimation. Computational Statistics € Data Analysis, 157C: 107175.

Hintz E, Hofert M, Lemieux C (2022). Multivariate normal variance mixtures in R: the R package
nvmix. Journal of Statistical Software. To appear.

Hofert M, Hintz E, Lemieux C (2022). nvmix: multivariate normal variance mixtures. R package
version 0.0-7, https://CRAN.R-project.org/package=nvmix.

Hofert M, Kojadinovic I, Maechler M, Yan J (2020). copula: multivariate dependence with
copulas. R package version 1.0-0, https://CRAN.R-project.org/package=copula.

Hofert M, Lemieux C (2019). qrng: (randomized) quasi-random number generators. R package
version 0.0-7, https://CRAN.R-project.org/package=qrng.

Hofert M, Méchler M (2011). Nested Archimedean copulas meet R: the nacopula package. Jour-
nal of Statistical Software, 39(9): 1-20.

Kano Y (1994). Consistency property of elliptic probability density functions. Journal of Multi-
variate Analysis, 51(1): 139-147.

Kojadinovic I, Yan J (2010). Modeling multivariate distributions with continuous margins using
the copula R package. Journal of Statistical Software, 34(9): 1-20.

Luo X, Shevchenko P (2010). The ¢ copula with multiple parameters of degrees of freedom:
bivariate characteristics and application to risk management. Quantitative Finance, 10(9):
1039-1054.

Mashal R, Zeevi A (2002). Beyond correlation: extreme co-movements between financial assets.
Available at SSRN: http://dx.doi.org/10.2139/ssrn.317122.

McNeil A, Frey R, Embrechts P (2015). Quantitative Risk Management: Concepts, Techniques
and Tools. Princeton University Press.

Protassov R (2004). EM-based maximum likelihood parameter estimation for multivariate gen-
eralized hyperbolic distributions with fixed A. Statistics and Computing, 14(1): 67-77.

Wang X, Yan J (2013). Practical notes on multivariate modeling based on elliptical copulas.
Journal de la Société Frangaise de Statistique, 154(1): 102-115.

Weibel M, Luethi D, Breymann W (2020). ghyp: generalized hyperbolic distributions and its
special cases. R package version 1.6.1, https://CRAN.R-project.org/package=ghyp.

Yan J (2007). Enjoy the joy of copulas: with a package copula. Journal of Statistical Software,
21(4): 1-21.

Yoshiba T (2018a). Maximum likelihood estimation of skew-¢ copulas with its applications to
stock returns. Journal of Statistical Computation and Simulation, 88(13): 2489-2506.

http://dx.doi.org/10.2139/ssrn.1358956
https://CRAN.R-project.org/package=nvmix
https://CRAN.R-project.org/package=copula
https://CRAN.R-project.org/package=qrng
http://dx.doi.org/10.2139/ssrn.317122
https://CRAN.R-project.org/package=ghyp

	Introduction
	Sampling the t, Grouped t and Skew t Copula
	Sampling the Grouped t Copula with Pseudo- and Quasi-Random Numbers
	Sampling from the Skew-t Copula and the Effect of Estimated Margins

	Estimating the t, Grouped t and Skew t Copula
	Parameter Estimation for the t Copula
	Parameter Estimation for the Grouped t Copula
	Parameter Estimation for the Skew t Copula

	Conclusion

