Abstract: According to 2006 Programme for International Student Assess ment (PISA), sixteen Organization for Economic Cooperation and Develop ment (OECD) countries had scores that were significantly higher than the US. The top three performers were Finland, Canada, and Japan. While Finland and Japan are vastly different from the US in terms of cultures and educational systems, the US and Canada are similar to each other in many aspects, thus their performance gap was investigated. In this study data mining was employed to identify factors regarding access to and use of resources, as well as student views on science for predicting PISA science scores among Grade 10 American and Canadian students. It was found that science enjoyment and frequent use of educational software play important roles in the academic achievement of Canadian students.
Abstract: It is shown that the most popular posterior distribution for the mean of the normal distribution is obtained by deriving the distribution of the ratio X/Y when X and Y are normal and Student’s t random variables distributed independently of each other. Tabulations of the associated percentage points are given along with a computer program for generating them.
Abstract: In alcohol studies, drinking outcomes such as number of days of any alcohol drinking (DAD) over a period of time do not precisely capture the differences among subjects in a study population of interest. For example, the value of 0 on DAD could mean that the subject was continually abstinent from drinking such as lifetime abstainers or the subject was alcoholic, but happened not to use any alcohol during the period of interest. In statistics, zeros of the first kind are called structural zeros, to distinguish them from the sampling zeros of the second type. As the example indicates, the structural and sampling zeros represent two groups of subjects with quite different psychosocial outcomes. In the literature on alcohol use, although many recent studies have begun to explicitly account for the differences between the two types of zeros in modeling drinking variables as a response, none has acknowledged the implications of the different types of zeros when such modeling drinking variables are used as a predictor. This paper serves as the first attempt to tackle the latter issue and illustrate the importance of disentangling the structural and sampling zeros by using simulated as well as real study data.
Abstract: Conventional sampling in biostatistics and economics posits an individual in a fixed observable state (e.g., diseased or not, poor or not, etc.). Social, market, and opinion research, however, require a cognitive sampling theory which recognizes that a respondent has a choice between two options (e.g., yes versus no). This new theory posits the survey re spondent as a personal probability. Once the sample is drawn, a series of independent non-identical Bernoulli trials are carried out. The outcome of each trial is a momentary binary choice governed by this unobserved proba bility. Liapunov’s extended central limit theorem (Lehmann, 1999) and the Horvitz-Thompson (1952) theorem are then brought to bear on sampling unobservables, in contrast to sampling observations. This formulation reaf firms the usefulness of a weighted sample proportion, which is now seen to estimate a different target parameter than that of conventional design-based sampling theory
Abstract: In this paper the log-exponentiated-Weibull regression model is modified to allow the possibility that long term survivors are present in the data. The modification leads to a log-exponentiated-Weibull regression model with cure rate, encompassing as special cases the log-exponencial regression and log-Weibull regression models with cure rate typically used to model such data. The models attempt to estimate simultaneously the effects of covariates on the acceleration/deceleration of the timing of a given event and the surviving fraction; that is, the proportion of the population for which the event never occurs. Assuming censored data, we consider a classic analysis and Bayesian analysis for the parameters of the proposed model. The normal curvatures of local influence are derived under various perturbation schemes and two deviance-type residuals are proposed to assess departures from the log-exponentiated-Weibull error assumption as well as to detect outlying observations. Finally, a data set from the medical area is analyzed.