This paper aims to determine the effects of socioeconomic and healthcare factors on the performance of controlling COVID-19 in both the Southern and Southeastern United States. This analysis will provide government agencies with information to determine what communities need additional COVID-19 assistance, to identify counties that effectively control COVID-19, and to apply effective strategies on a broader scale. The statistical analysis uses data from 328 counties with a population of more than 65,000 from 13 states. We define a new response variable by considering infection and mortality rates to capture how well each county controls COVID-19. We collect 14 factors from the 2019 American Community Survey Single-Year Estimates and obtain county-level infection and mortality rates from USAfacts.org. We use the least absolute shrinkage and selection operator (LASSO) regression to fit a multiple linear regression model and develop an interactive system programmed in R shiny to deliver all results. The interactive system at https://asa-competition-smu.shinyapps.io/COVID19/ provides many options for users to explore our data, models, and results.