Bayesian methods provide direct uncertainty quantification in functional data analysis applications without reliance on bootstrap techniques. A major tool in functional data applications is the functional principal component analysis which decomposes the data around a common mean function and identifies leading directions of variation. Bayesian functional principal components analysis (BFPCA) provides uncertainty quantification on the estimated functional model components via the posterior samples obtained. We propose central posterior envelopes (CPEs) for BFPCA based on functional depth as a descriptive visualization tool to summarize variation in the posterior samples of the estimated functional model components, contributing to uncertainty quantification in BFPCA. The proposed BFPCA relies on a latent factor model and targets model parameters within a hierarchical modeling framework using modified multiplicative gamma process shrinkage priors on the variance components. Functional depth provides a center-outward order to a sample of functions. We utilize modified band depth and modified volume depth for ordering of a sample of functions and surfaces, respectively, to derive at CPEs of the mean and eigenfunctions within the BFPCA framework. The proposed CPEs are showcased in extensive simulations. Finally, the proposed CPEs are applied to the analysis of a sample of power spectral densities from resting state electroencephalography where they lead to novel insights on diagnostic group differences among children diagnosed with autism spectrum disorder and their typically developing peers across age.
Abstract: A new set of methods are developed to perform cluster analysis of functions, motivated by a data set consisting of hydraulic gradients at several locations distributed across a wetland complex. The methods build on previous work on clustering of functions, such as Tarpey and Kinateder (2003) and Hitchcock et al. (2007), but explore functions generated from an additive model decomposition (Wood, 2006) of the original time series. Our decomposition targets two aspects of the series, using an adaptive smoother for the trend and circular spline for the diurnal variation in the series. Different measures for comparing locations are discussed, including a method for efficiently clustering time series that are of different lengths using a functional data approach. The complicated nature of these wetlands are highlighted by the shifting group memberships depending on which scale of variation and year of the study are considered.