istribution of Lindley distribution constructed by combining the cumulative distribution function (cdf) of Lomax and Lindley distributions. Some mathematical properties of the new distribution are discussed including moments, quantile and moment generating function. Estimation of the model parameters is carried out using maximum likelihood method. Finally, real data examples are presented to illustrate the usefulness and applicability of this new distribution.
Abstract: We introduce and study a new four-parameter lifetime model named the exponentiated generalized extended exponential distribution. The proposed model has the advantage of including as special cases the exponential and exponentiated exponential distributions, among others, and its hazard function can take the classic shapes: bathtub, inverted bathtub, increasing, decreasing and constant, among others. We derive some mathematical properties of the new model such as a representation for the density function as a double mixture of Erlang densities, explicit expressions for the quantile function, ordinary and incomplete moments, mean deviations, Bonferroni and Lorenz curves, generating function, R´enyi entropy, density of order statistics and reliability. We use the maximum likelihood method to estimate the model parameters. Two applications to real data illustrate the flexibility of the proposed model.
We propose a lifetime distribution with flexible hazard rate called cubic rank transmuted modified Burr III (CRTMBIII) distribution. We develop the proposed distribution on the basis of the cubic ranking transmutation map. The density function of CRTMBIII is symmetrical, right-skewed, left-skewed, exponential, arc, J and bimodal shaped. The flexible hazard rate of the proposed model can accommodate almost all types of shapes such as unimodal, bimodal, arc, increasing, decreasing, decreasing-increasing-decreasing, inverted bathtub and modified bathtub. To show the importance of proposed model, we present mathematical properties such as moments, incomplete moments, inequality measures, residual life function and stress strength reliability measure. We characterize the CRTMBIII distribution via techniques. We address the maximum likelihood method for the model parameters. We evaluate the performance of the maximum likelihood estimates (MLEs) via simulation study. We establish empirically that the proposed model is suitable for strengths of glass fibers. We apply goodness of fit statistics and the graphical tools to examine the potentiality and utility of the CRTMBIII distribution.
In this article, we introduce a new class of five-parameter model called the Exponentiated Weibull Lomax arising from the Exponentiated Weibull generated family. The new class contains some existing distributions as well as some new models. Explicit expressions for its moments, distribution and density functions, moments of residual life function are derived. Furthermore, Rényi and q–entropies, probability weighted moments, and order statistics are obtained. Three suggested procedures of estimation, namely, the maximum likelihood, least squares and weigthed least squares are used to obtain the point estimators of the model parameters. Simulation study is performed to compare the performance of different estimates in terms of their relative biases and standard errors. In addition, an application to two real data sets demonstrate the usefulness of the new model comparing with some new models.
Abstract: The generalized gamma model has been used in several applied areas such as engineering, economics and survival analysis. We provide an extension of this model called the transmuted generalized gamma distribution, which includes as special cases some lifetime distributions. The proposed density function can be represented as a mixture of generalized gamma densities. Some mathematical properties of the new model such as the moments, generating function, mean deviations and Bonferroni and Lorenz curves are provided. We estimate the model parameters using maximum likelihood. We prove that the proposed distribution can be a competitive model in lifetime applications by means of a real data set.