Abstract: Missing data are a common problem for researchers working with surveys and other types of questionnaires. Often, respondents do not respond to one or more items, making the conduct of statistical analyses, as well as the calculation of scores difficult. A number of methods have been developed for dealing with missing data, though most of these have focused on continuous variables. It is not clear that these techniques for imputation are appropriate for the categorical items that make up surveys. However, methods of imputation specifically designed for categorical data are either limited in terms of the number of variables they can accommodate, or have not been fully compared with the continuous data approaches used with categorical variables. The goal of the current study was to compare the performance of these explicitly categorical imputation approaches with the more well established continuous method used with categorical item responses. Results of the simulation study based on real data demonstrate that the continuous based imputation approach and a categorical method based on stochastic regression appear to perform well in terms of creating data that match the complete datasets in terms of logistic regression results.
Abstract: We introduce a new class of the slash distribution using folded normal distribution. The proposed model defined on non-negative measure ments extends the slashed half normal distribution and has higher kurtosis than the ordinary half normal distribution. We study the characterization and properties involving moments and some measures based on moments of this distribution. Finally, we illustrate the proposed model with a simulation study and a real application.
Journal:Journal of Data Science
Volume 21, Issue 3 (2023): Special Issue: Advances in Network Data Science, pp. 599–618
Abstract
Social network data often contain missing values because of the sensitive nature of the information collected and the dependency among the network actors. As a response, network imputation methods including simple ones constructed from network structural characteristics and more complicated model-based ones have been developed. Although past studies have explored the influence of missing data on social networks and the effectiveness of imputation procedures in many missing data conditions, the current study aims to evaluate a more extensive set of eight network imputation techniques (i.e., null-tie, Reconstruction, Preferential Attachment, Constrained Random Dot Product Graph, Multiple Imputation by Bayesian Exponential Random Graph Models or BERGMs, k-Nearest Neighbors, Random Forest, and Multiple Imputation by Chained Equations) under more practical conditions through comprehensive simulation. A factorial design for missing data conditions is adopted with factors including missing data types, missing data mechanisms, and missing data proportions, which are applied to generated social networks with varying numbers of actors based on 4 different sets of coefficients in ERGMs. Results show that the effectiveness of imputation methods differs by missing data types, missing data mechanisms, the evaluation criteria used, and the complexity of the social networks. More complex methods such as the BERGMs have consistently good performances in recovering missing edges that should have been present. While simpler methods like Reconstruction work better in recovering network statistics when the missing proportion of present edges is low, the BERGMs work better when more present edges are missing. The BERGMs also work well in recovering ERGM coefficients when the networks are complex and the missing data type is actor non-response. In conclusion, researchers analyzing social networks with incomplete data should identify the network structures of interest and the potential missing data types before selecting appropriate imputation methods.