In this work, we study the odd Lindley Burr XII model initially introduced by Silva et al. [29]. This model has the advantage of being capable of modeling various shapes of aging and failure criteria. Some of its statistical structural properties including ordinary and incomplete moments, quantile and generating function and order statistics are derived. The odd Lindley Burr XII density can be expressed as a simple linear mixture of BurrXII densities. Useful characterizations are presented. The maximum likelihood method is used to estimate the model parameters. Simulation results to assess the performance of the maximum likelihood estimators are discussed. We prove empirically the importance and flexibility of the new model in modeling various types of data. Bayesian estimation is performed by obtaining the posterior marginal distributions as well as using the simulation method of Markov Chain Monte Carlo (MCMC) by the Metropolis-Hastings algorithm in each step of Gibbs algorithm. The trace plots and estimated conditional posterior distributions are also presented.
Abstract: We propose two simple, easy-to-implement methods for obtaining simultaneous credible bands in hierarchical models from standard Markov chain Monte Carlo output. The methods generalize Scheff´e’s (1953) approach to this problem, but in a Bayesian context. A small simulation study is followed by an application of the methods to a seasonal model for Ache honey gathering.