Abstract: In compositional data, an observation is a vector with non-negative components which sum to a constant, typically 1. Data of this type arise in many areas, such as geology, archaeology, biology, economics and political science among others. The goal of this paper is to extend the taxicab metric and a newly suggested metric for com-positional data by employing a power transformation. Both metrics are to be used in the k-nearest neighbours algorithm regardless of the presence of zeros. Examples with real data are exhibited.
In this paper, we define and study a four-parameter model called the transmuted Burr XII distribution. We obtain some of its mathematical properties including explicit expressions for the ordinary and incomplete moments, generating function, order statistics, probability weighted moments and entropies. We formulate and develop a log-linear model using the new distribution so-called the log-transmuted Burr XII distribution for modeling data with a unimodal failure rate function, as an alternative to the log-McDonald Burr XII, log-beta Burr XII, log-Kumaraswamy Burr XII, log-Burr XII and logistic regression models. The flexibility of the proposed models is illustrated by means of three applications to real data sets.
Abstract: We introduce a new class of continuous distributions called the Ku maraswamy transmuted-G family which extends the transmuted class defined by Shaw and Buckley (2007). Some special models of the new family are provided. Some of its mathematical properties including explicit expressions for the ordinary and incomplete moments, generating function, Rényi and Shannon entropies, order statistics and probability weighted moments are derived. The maximum likelihood is used for estimating the model parameters. The flexibility of the generated family is illustrated by means of two applications to real data sets.
Abstract: We introduce a new class of the slash distribution using folded normal distribution. The proposed model defined on non-negative measure ments extends the slashed half normal distribution and has higher kurtosis than the ordinary half normal distribution. We study the characterization and properties involving moments and some measures based on moments of this distribution. Finally, we illustrate the proposed model with a simulation study and a real application.
Abstract: Chen, Bunce and Jiang [In: Proceedings of the International Con ference on Computational Intelligence and Software Engineering, pp. 1-4] claim to have proposed a new extreme value distribution. But the formulas given for the distribution do not form a valid probability distribution. Here, we correct their formulas to form a valid probability distribution. For this valid distribution, we provide a comprehensive treatment of mathematical properties, estimate parameters by the method of maximum likelihood and provide the observed information matrix. The flexibility of the distribution is illustrated using a real data set.