In this paper, a new five-parameter extended Burr XII model called new modified Singh-Maddala (NMSM) is developed from cumulative hazard function of the modified log extended integrated beta hazard (MLEIBH) model. The NMSM density function is left-skewed, right-skewed and symmetrical. The Lambert W function is used to study descriptive measures based on quantile, moments, and moments of order statistics, incomplete moments, inequality measures and residual life function. Different reliability and uncertainty measures are also theoretically established. The NMSM distribution is characterized via different techniques and its parameters are estimated using maximum likelihood method. The simulation studies are performed on the basis of graphical results to illustrate the performance of maximum likelihood estimates (MLEs) of the parameters. The significance and flexibility of NMSM distribution is tested through different measures by application to two real data sets.
We introduce a new class of distributions called the generalized odd generalized exponential family. Some of its mathematical properties including explicit expressions for the ordinary and incomplete moments, quantile and generating functions, R𝑒́nyi, Shannon and q-entropies, order statistics and probability weighted moments are derived. We also propose bivariate generalizations. We constructed a simple type Copula and intro-duced a useful stochastic property. The maximum likelihood method is used for estimating the model parameters. The importance and flexibility of the new family are illustrated by means of two applications to real data sets. We assess the performance of the maximum likelihood estimators in terms of biases and mean squared errors via a simulation study.
In this paper, we introduce a new four-parameter distribution called the transmuted Weibull power function (TWPF) distribution which e5xtends the transmuted family proposed by Shaw and Buckley [1]. The hazard rate function of the TWPF distribution can be constant, increasing, decreasing, unimodal, upside down bathtub shaped or bathtub shape. Some mathematical properties are derived including quantile functions, expansion of density function, moments, moment generating function, residual life function, reversed residual life function, mean deviation, inequality measures. The estimation of the model parameters is carried out using the maximum likelihood method. The importance and flexibility of the proposed model are proved empirically using real data sets.
Abstract: We introduce and study a new four-parameter lifetime model named the exponentiated generalized extended exponential distribution. The proposed model has the advantage of including as special cases the exponential and exponentiated exponential distributions, among others, and its hazard function can take the classic shapes: bathtub, inverted bathtub, increasing, decreasing and constant, among others. We derive some mathematical properties of the new model such as a representation for the density function as a double mixture of Erlang densities, explicit expressions for the quantile function, ordinary and incomplete moments, mean deviations, Bonferroni and Lorenz curves, generating function, R´enyi entropy, density of order statistics and reliability. We use the maximum likelihood method to estimate the model parameters. Two applications to real data illustrate the flexibility of the proposed model.
In this paper, we proposed another extension of inverse Lindley distribution, called extended inverse Lindley and studied its fundamental properties such as moments, inverse moments, mean deviation, stochastic ordering and entropy. The flexibility of the proposed distribution is shown by studying monotonicity properties of density and hazard functions. It is shown that the distribution belongs to the family of upside-down bathtub shaped distributions. Maximum likelihood estimators along with asymptotic confidence intervals are constructed for estimating the unknown parameters. An algorithm is presented for random number generation form the distribution. The property of consistency of MLEs has been verified on the basis of simulated samples. The applicability of the extended inverse Lindley distribution is illustrated by means of real data analysis.