In this paper we introduce the generalized extended inverse Weibull finite failure software reliability growth model which includes both increasing/decreasing nature of the hazard function. The increasing/decreasing behavior of failure occurrence rate fault is taken into account by the hazard of the generalized extended inverse Weibull distribution. We proposed a finite failure non-homogeneous Poisson process (NHPP) software reliability growth model and obtain unknown model parameters using the maximum likelihood method for interval domain data. Illustrations have been given to estimate the parameters using standard data sets taken from actual software projects. A goodness of fit test is performed to check statistically whether the fitted model provides a good fit with the observed data. We discuss the goodness of fit test based on the Kolmogorov-Smirnov (K-S) test statistic. The proposed model is compared with some of the standard existing models through error sum of squares, mean sum of squares, predictive ratio risk and Akaikes information criteria using three different data sets. We show that the observed data fits the proposed software reliability growth model. We also show that the proposed model performs satisfactory better than the existing finite failure category models
In this paper, we introduce some new families of generalized Pareto distributions using the T-R{Y} framework. These families of distributions are named T-Pareto{Y} families, and they arise from the quantile functions of exponential, log-logistic, logistic, extreme value, Cauchy and Weibull distributions. The shapes of these T-Pareto families can be unimodal or bimodal, skewed to the left or skewed to the right with heavy tail. Some general properties of the T-Pareto{Y} family are investigated and these include the moments, modes, mean deviations from the mean and from the median, and Shannon entropy. Several new generalized Pareto distributions are also discussed. Four real data sets from engineering, biomedical and social science are analyzed to demonstrate the flexibility and usefulness of the T-Pareto{Y} families of distributions.
In this paper, we considered a new generalization of the paralogistic distribution which we called the three-parameter paralogistic distribution. Some properties of the new distribution which includes the survival function, hazard function, quantile function, moments, Renyi entropy and the maximum likelihood estimation (MLE) of its parameters are obtained. A simulation study shows that the MLE of the parameters of the new distribution is consistent and asymptotically unbiased. An applicability of the new three-parameter paralogistic distribution was subject to a real lifetime data set alongside with some related existing distributions such as the Paralogistic, Gamma, Transformed Beta, Log-logistic and Inverse paralogistic distributions. The results obtained show that the new three-parameter paralogistic distribution was superior to other aforementioned distributions in terms of the Akaike information criterion (AIC) and K-S Statistic values. This claim was further supported by investigating the density plots, P-P plots and Q-Q plots of the distributions for the data set under study.
Abstract: In this paper, we introduce an extended four-parameter Fr´echet model called the exponentiated exponential Fr´echet distribution, which arises from the quantile function of the standard exponential distribution. Various of its mathematical properties are derived including the quantile function, ordinary and incomplete moments, Bonferroni and Lorenz curves, mean deviations, mean residual life, mean waiting time, generating function, Shannon entropy and order statistics. The model parameters are estimated by the method of maximum likelihood and the observed information matrix is determined. The usefulness of the new distribution is illustrated by means of three real lifetime data sets. In fact, the new model provides a better fit to these data than the Marshall-Olkin Fr´echet, exponentiated-Fr´echet and Fr´echet models.
In this paper, kumaraswamy reciprocal family of distributions is introduced as a new continues model with some of approximation to other probabilistic models as reciprocal, beta, uniform, power function, exponential, negative exponential, weibull, rayleigh and pareto distribution. Some fundamental distributional properties, force of mortality, mills ratio, bowley skewness, moors kurtosis, reversed hazard function, integrated hazard function, mean residual life, probability weighted moments, bonferroni and lorenz curves, laplace-stieltjes transform of this new distribution with the maximum likelihood method of the parameter estimation are studied. Finally, four real data sets originally presented are used to illustrate the proposed estimators.